|
Medical Diagnosis 2024
细胞衰老在非酒精性脂肪肝中的发病机制研究
|
Abstract:
衰老是生物界的普遍规律,细胞衰老是细胞的一种最基本的生物学行为,也是一个应激导致细胞生长停滞的生理过程。近年来,基础和临床研究均发现衰老肝脏细胞和年轻肝脏细胞具有在代谢活性、基因分子及免疫分子等都具有明显差异,并显示出与该差异相关的特征性形态和生理变化,参与慢性肝病的发生发展。本文关于细胞衰老与NAFLD的关系及衰老诱发肝脏相关代谢性系列疾病的发生发展机制进行综述,为防治非酒精性脂肪肝提供新的研究思路。
Senescence is a universal law in the biological world. Cell senescence is not only one of the most basic biological behaviors of cells, but also a physiological process in which stress leads to cell growth stagnation. In recent years, basic and clinical studies have found that there are significant differences in metabolic activity, gene molecules and immune molecules between aging liver cells and young liver cells, and show characteristic morphological and physiological changes related to this difference. Participate in the occurrence and development of chronic liver disease. This article reviews the relationship between cell senescence and NAFLD and the mechanism of occurrence and development of liver-related metabolic diseases induced by aging, in order to provide new research ideas for the prevention and treatment of non-alcoholic fatty liver.
[1] | 曹巍, 孟宪红. 新型降糖药在非酒精性脂肪性肝病中的研究进展[J]. 胃肠病学和肝病学杂志, 2022, 31(6): 705-709. |
[2] | 金玉, 武晓旭, 李秋娟, 关怀. 非酒精性脂肪性肝病流行现状调查[J]. 人民军医, 2021, 64(5): 425-428. |
[3] | He, Y., Su, Y., Duan, C., et al. (2023) Emerging Role of Aging in the Progression of NAFLD to HCC. Ageing Research Reviews, 84, Arti-cle ID: 101833. https://doi.org/10.1016/j.arr.2022.101833 |
[4] | Ge, T., Shao, Y., Bao, X., Xu, W. and Lu, C. (2023) Cel-lular Senescence in Liver Diseases: From Mechanisms to Therapies. International Immunopharmacology, 121, Article ID: 110522. https://doi.org/10.1016/j.intimp.2023.110522 |
[5] | Baboota, R.K., Rawshani, A., Bonnet, L., et al. (2022) BMP4 and Gremlin 1 Regulate Hepatic Cell Senescence during Clinical Progression of NAFLD/NASH. Nature Metabolism, 4, 1007-1021.
https://doi.org/10.1038/s42255-022-00620-x |
[6] | Popper, H. (1986) Aging and the Liver. Progress in Liver Diseases, 8, 659-683. |
[7] | Bril, F., Sanyal, A. and Cusi, K. (2023) Metabolic Syndrome and Its Association with Nonalcoholic Steatohepa-titis. Clinics in Liver Disease, 27, 187-210. https://doi.org/10.1016/j.cld.2023.01.002 |
[8] | Booth, L.K., Redgrave, R.E., Tual-Chalot, S., Spyridopoulos, I., Phillips, H.M. and Richardson, G.D. (2023) Heart Disease and Ageing: The Roles of Se-nescence, Mitochondria, and Telomerase in Cardiovascular Disease. Subcellular Biochemistry, 103, 45-78. https://doi.org/10.1007/978-3-031-26576-1_4 |
[9] | Iwasaki, K., Abarca, C. and Aguayo-Mazzucato, C. (2023) Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes & Metabolism Jour-nal, 47, 441-453.
https://doi.org/10.4093/dmj.2022.0416 |
[10] | Xiang, Q., Tian, F., Xu, J., Du, X., Zhang, S. and Liu, L. (2022) New Insight into Dyslipidemia-Induced Cellular Senescence in Atherosclerosis. Biological reviews of the Cambridge Philosophical Society, 97, 1844-1867.
https://doi.org/10.1111/brv.12866 |
[11] | Engelmann, C. and Tacke, F. (2022) The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 23, Article No. 652. https://doi.org/10.3390/ijms23020652 |
[12] | Gao, Y., Zhang, W., Zeng, L.Q., et al. (2020) Exercise and Dietary Interven-tion Ameliorate High-Fat Diet-Induced NAFLD and Liver Aging by Inducing Lipophagy. Redox Biology, 36, Article ID: 101635.
https://doi.org/10.1016/j.redox.2020.101635 |
[13] | 陈茗, 冯文静, 胡松, 刘佳, 王珊, 毛拥军. 褐藻胶寡糖对D-半乳糖诱导的衰老模型小鼠肝脏损伤的保护作用及其机制[J]. 精准医学杂志, 2022, 37(3): 217-221. https://doi.org/10.13362/J.Jpmed.202203007 |
[14] | Zoubek, M.E., Trautwein, C. and Strnad, P. (2017) Reversal of Liver Fibrosis: From Fiction to Reality. Best Practice & Research Clinical Gastroenterology, 31, 129-141. https://doi.org/10.1016/j.bpg.2017.04.005 |
[15] | Kong, X., Feng, D., Wang, H., et al. (2012) Interleukin-22 Induces Hepat-ic Stellate Cell Senescence and Restricts Liver Fibrosis in Mice. Hepatology, 56, 1150-1159. https://doi.org/10.1002/hep.25744 |
[16] | Delire, B., Lebrun, V., Selvais, C., et al. (2016) Aging Enhances Liver Fibrotic Response in Mice through Hampering Extracellular Matrix Remodeling. Aging (Albany NY), 9, 98-113. https://doi.org/10.18632/aging.101124 |
[17] | 陈明华. IL-10通过STAT3/P53/P21信号通路促进活化的肝星状细胞衰老[D]: [硕士学位论文]. 福州: 福建医科大学, 2019. https://doi.org/10.27020/D.Cnki.Gfjyu.2019.000889 |
[18] | 王菲. 慢性应激促进大鼠肝细胞衰老在肝纤维化中的作用[D]: [硕士学位论文]. 郑州: 郑州大学, 2018. |
[19] | Kuilman, T., Michaloglou, C., Vredeveld, L.C., et al. (2008) Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflamma-tory Network. Cell, 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039 |
[20] | Sasaki, M., Sato, Y. and Nakanuma, Y. (2020) Increased P16INK4a-Expressing Senescent Bile Ductular Cells Are Associated with Inadequate Response to Ur-sodeoxycholic Acid in Primary Biliary Cholangitis. Journal of Autoimmunity, 107, Article ID: 102377. https://doi.org/10.1016/j.jaut.2019.102377 |
[21] | Jiang, G.X., Zhong, X.Y., Cui, Y.F., et al. (2010) IL-6/STAT3/TFF3 Signaling Regulates Human Biliary Epithelial Cell Migration and Wound Healing in Vitro. Molecular Biology Reports, 37, 3813-3818.
https://doi.org/10.1007/s11033-010-0036-z |
[22] | 徐小元, 丁惠国, 李文刚, 徐京杭, 韩莹, 贾继东, 魏来, 段钟平, 令狐恩强, 庄辉. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425. |
[23] | Hoare, M., Das, T. and Alexander, G. (2010) Ageing, Telomeres, Senescence, and Liver Injury. Journal of Hepatology, 53, 950-961. https://doi.org/10.1016/j.jhep.2010.06.009 |
[24] | Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., De Pinho, R.A., et al. (1997) Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. Cell, 91, 25-34.
https://doi.org/10.1016/S0092-8674(01)80006-4 |
[25] | FGe, T., Shao, Y., Bao, X., Xu, W. and Lu, C. (2023) Cellular Se-nescence in Liver Diseases: From Mechanisms to Therapies. International Immunopharmacology, 121, Article ID: 110522. https://doi.org/10.1016/j.intimp.2023.110522 |
[26] | 夏长发, 董学思, 何丽, 等. 中国和美国的癌症统计数据(2022年): 概况、趋势和决定因素[J]. 中华医学杂志, 2022, 135(5): 584-590. https://doi.org/10.1097/CM9.0000000000002108 |
[27] | Kang, T.W., Yevsa, T., Woller, N., et al. (2011) Senescence Sur-veillance of Pre-Malignant Hepatocytes Limits Liver Cancer Development. Nature, 479, 547-551. https://doi.org/10.1038/nature10599 |
[28] | Leon, K.E. and Aird, K.M. (2019) Jumonji C Demethylases in Cellular Senes-cence. Genes, 10, Article No. 33.
https://doi.org/10.3390/genes10010033 |
[29] | Coppé, J.P., Patil, C.K., et al. (2008) Senescence-Associated Secretory Phe-notypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLOS Biology, 6, 2853-2868.
https://doi.org/10.1371/journal.pbio.0060301 |
[30] | Papatheodoridi, A.M., Chrysavgis, L., Koutsilieris, M. and Chatzigeor-giou, A. (2020) The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalco-holic Steatohepatitis. Hepatology, 71, 363-374. https://doi.org/10.1002/hep.30834 |
[31] | Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64.
https://doi.org/10.1016/j.jhep.2014.12.012 |
[32] | Campisi, J. (2005) Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell, 120, 513-522. https://doi.org/10.1016/j.cell.2005.02.003 |
[33] | Beauséjour, C.M., Krtolica, A., Galimi, F., et al. (2003) Reversal of Human Cellular Senescence: Roles of the P53 and P16 Pathways. EMBO Journal, 22, 4212-4222. https://doi.org/10.1093/emboj/cdg417 |
[34] | Hamrick, M.W., Herberg, S., Arounleut, P., et al. (2010) The Adipokineleptin Increases Skeletal Muscle Mass and Significantly Alters Skeletal Muscle MiRNA Expression Profile in Aged Mice. Biochemical and Biophysical Research Communications, 400, 379-383. https://doi.org/10.1016/j.bbrc.2010.08.079 |
[35] | Li, N., Muthusamy, S., Liang, R., Sarojini, H. and Wang, E. (2011) In-creased Expression of MiR-34a and MiR-93 in Rat Liver during Aging, and Their Impact on the Expression of Mgst1 and Sirt1. Mechanisms of Ageing and Development, 132, 75-85. https://doi.org/10.1016/j.mad.2010.12.004 |
[36] | 张颖, 保志军. Mi-croRNA在肝脏胰岛素抵抗以及衰老中的研究进展[J]. 老年医学与保健, 2018, 24(6): 746-749. |
[37] | 张玉皓. LPK基因在非酒精性脂肪肝中的表观遗传学研究[D]: [博士学位论文]. 上海: 复旦大学, 2012. |
[38] | 谢益文, 徐素美, 陈芝芸, 杨晴柔, 何蓓晖. 非酒精性脂肪性肝病进展中肝组织细胞衰老相关基因P21、SIRT6和NF-κB MRNA表达[J]. 浙江中西医结合杂志, 2020, 30(8): 631-633. |
[39] | Kakuda, T., Suzuki, J., Matsuoka, Y., Kikugawa, T., Saika, T. and Yamashita, M. (2023) Senescent CD8+ T Cells Acquire NK Cell-Like Innate Functions to Promote Antitumor Immunity. Cancer Science, 114, 2810-2820.
https://doi.org/10.1111/cas.15824 |
[40] | Kundu, D., Kennedy, L., Meadows, V., Baiocchi, L., Alpini, G. and Francis, H. (2020) The Dynamic Interplay between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expression, 20, 77-88.
https://doi.org/10.3727/105221620X15960509906371 |
[41] | Lujambio, A., Akkari, L., et al. (2013) Non-Cell-Autonomous Tumor Suppression by P53. Cell, 153, 449-460.
https://doi.org/10.1016/j.cell.2013.03.020 |
[42] | Vienberg, S., Geiger, J., Madsen, S. and Dalgaard, L.T. (2017) Mi-croRNAs in Metabolism. Acta Physiologica (Oxford), 219, 346-361. https://doi.org/10.1111/apha.12681 |
[43] | Ghafouri-Fard, S., Abak, A., Talebi, S.F., et al. (2021) Role of MiRNA and LncRNAs in Organ Fibrosis and Aging. Biomedicine & Pharmacotherapy, 143, Article ID: 112132. https://doi.org/10.1016/j.biopha.2021.112132 |
[44] | Palmer, A.K., Xu, M., Zhu, Y., et al. (2019) Targeting Senescent Cells Alleviates Obesity-Induced Metabolic Dysfunction. Aging Cell, 18, E12950. https://doi.org/10.1111/acel.12950 |
[45] | Munoz-Espin, D. and Serrano, M. (2014) Cellular Senescence: From Physiology to Pathology. Nature Reviews Molecular Cell Biology, 15, 482-496. https://doi.org/10.1038/nrm3823 |
[46] | Yuan, L., Mao, Y., Luo, W., et al. (2017) Palmitic Acid Dysregulates the Hippo-YAP Pathway and Inhibits Angiogenesis by Inducing Mito-chondrial Damage and Activating the Cytosolic DNA Sensor CGAS-STING-IRF3 Signaling Mechanism. Journal of Biological Chemistry, 292, 15002-15015. https://doi.org/10.1074/jbc.M117.804005 |
[47] | Zhang, C.Y., Tan, X.H., Yang, H.H., et al. (2022) COX-2/SEH Dual Inhibitor Alleviates Hepatocyte Senescence in NAFLD Mice by Restoring Autophagy through Sirt1/PI3K/AKT/MTOR. International Journal of Molecular Sciences, 23, Article No. 8267. https://doi.org/10.3390/ijms23158267 |