|
Pharmacy Information 2024
过氧化物酶体生物发生及相关疾病研究进展
|
Abstract:
过氧化物酶体是真核细胞中保守的细胞器,是哺乳动物中调控氧化还原和脂质稳态的重要枢纽。过氧化物酶体在细胞脂质和活性氧的代谢中具有关键作用,对人类健康和发育至关重要。过氧化物酶体途径的调节主要与过氧化物酶体群的数量变化有关,其稳态的动态变化主要通过过氧化物酶体生物发生和选择性自噬维持。过氧化物酶体功能异常不仅导致过氧化物酶体生物发生障碍疾病,还与许多其他人类疾病有关,如神经退行性疾病、癌症、衰老和糖尿病等。
Peroxisome is a conserved organelle in eukaryotic cells and an important hub for regulating redox and lipid homeostasis in mammals. Peroxisomes play a key role in the metabolism of cellular lipids and reactive oxygen species and are essential for human health and development. The regulation of the peroxisome pathway is mainly related to the change of the number in peroxisome groups, and the dynamic change of its homeostasis is mainly regulated by peroxisome biogenesis and pexophagy. Peroxisome dysfunction not only leads to peroxisome biogenesis disorders but also is associated with many other human diseases, such as neurodegenerative diseases, cancer, aging, and diabetes.
[1] | Fransen, M., Lismont, C. and Walton, P. (2017) The Peroxisome-Mitochondria Connection: How and Why? Interna-tional Journal of Molecular Sciences, 18, Article 1126. https://doi.org/10.3390/ijms18061126 |
[2] | Wanders, R.J.A., Baes, M., Ribeiro, D., et al. (2023) The Physiological Functions of Human Peroxisomes. Physiological Reviews, 103, 957-1024. https://doi.org/10.1152/physrev.00051.2021 |
[3] | Uzor, N.E., McCullough, L.D. and Tsvetkov, A.S. (2020) Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Frontiers in Cellular Neuroscience, 14, Ar-ticle 44. https://doi.org/10.3389/fncel.2020.00044 |
[4] | Vasko, R. (2016) Peroxisomes and Kidney Injury. Antioxi-dants & Redox Signaling, 25, 217-231.
https://doi.org/10.1089/ars.2016.6666 |
[5] | Lizard, G. (2020) Peroxisome Biology: Experimental Models, Peroxi-somal Disorders and Neurological Diseases. Springer, Berlin. |
[6] | Rhodin, J. (1958) Electron Microscopy of the Kidney. The American Journal of Medicine, 24, 661-675.
https://doi.org/10.1016/0002-9343(58)90373-5 |
[7] | Lodhi Irfan, J. and Semenkovich Clay, F. (2014) Peroxisomes: A Nexus for Lipid Metabolism and Cellular Signaling. Cell Metabolism, 19, 380-392. https://doi.org/10.1016/j.cmet.2014.01.002 |
[8] | Fujiki, Y., Okumoto, K., Honsho, M., et al. (2022) Molecular In-sights into Peroxisome Homeostasis and Peroxisome Biogenesis Disorders. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1869, Article ID: 119330.
https://doi.org/10.1016/j.bbamcr.2022.119330 |
[9] | Dong-Hyung, C., Yi Sak, K., Doo Sin, J., et al. (2018) Pex-ophagy: Molecular Mechanisms and Implications for Health and Diseases. Molecules and Cells, 41, 55-64. |
[10] | Smith, J.J. and Aitchison, J.D. (2013) Peroxisomes Take Shape. Nature Reviews Molecular Cell Biology, 14, 803-817.
https://doi.org/10.1038/nrm3700 |
[11] | Jansen, R.L.M., Santana-Molina, C., van den Noort, M., et al. (2021) Com-parative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Frontiers in Cell and Devel-opmental Biology, 9, Article 654163.
https://doi.org/10.3389/fcell.2021.654163 |
[12] | Joshi, A.S. and Cohen, S. (2019) Lipid Droplet and Peroxisome Biogenesis: Do They Go Hand-in-Hand? Frontiers in Cell and Developmental Biology, 7, Article 92. https://doi.org/10.3389/fcell.2019.00092 |
[13] | Costello, J.L. and Schrader, M. (2018) Unloosing the Gordian Knot of Peroxisome Formation. Current Opinion in Cell Biology, 50, 50-56. https://doi.org/10.1016/j.ceb.2018.02.002 |
[14] | Schrader, M., Costello, J.L., Godinho, L.F., et al. (2016) Prolifera-tion and Fission of Peroxisomes—An update. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1863, 971-983.
https://doi.org/10.1016/j.bbamcr.2015.09.024 |
[15] | Itoyama, A., Honsho, M., Abe, Y., et al. (2012) Docosahex-aenoic Acid Mediates Peroxisomal Elongation, a Prerequisite for Peroxisome Division. Journal of Cell Science, 125, 589-602. https://doi.org/10.1242/jcs.087452 |
[16] | Huybrechts, S.J., Van Veldhoven, P.P., Brees, C., et al. (2009) Peroxisome Dynamics in Cultured Mammalian Cells. Traffic, 10, 1722-1733. https://doi.org/10.1111/j.1600-0854.2009.00970.x |
[17] | Li, J. and Wang, W. (2021) Mechanisms and Functions of Pexophagy in Mammalian Cells. Cells, 10, Article 1094.
https://doi.org/10.3390/cells10051094 |
[18] | Kim, J. and Bai, H. (2022) Peroxisomal Stress Response and In-ter-Organelle Communication in Cellular Homeostasis and Aging. Antioxidants, 11, Article 192. https://doi.org/10.3390/antiox11020192 |
[19] | Komatsu, M., Waguri, S., Ueno, T., et al. (2005) Impairment of Star-vation-Induced and Constitutive Autophagy in Atg7-Deficient Mice. Journal of Molecular Cell Biology, 169, 425-434. https://doi.org/10.1083/jcb.200412022 |
[20] | Nazarko, T.Y. (2017) Pexophagy IS RESPONsible for 65% of Cases of Peroxisome Biogenesis Disorders. Autophagy, 13, 991-994. https://doi.org/10.1080/15548627.2017.1291480 |
[21] | Yergeau, C., Coussa, R.G., Antaki, F., et al. (2023) Zellwe-ger Spectrum Disorder: Ophthalmic Findings from a New Natural History Study Cohort and Scoping Literature Review. Ophthalmology, 130, 1313-1326.
https://doi.org/10.1016/j.ophtha.2023.07.026 |
[22] | Klouwer, F.C., Huffnagel, I.C., Ferdinandusse, S., et al. (2016) Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders. Neuropediatrics, 47, 205-220. https://doi.org/10.1055/s-0036-1582140 |
[23] | Berendse, K., Engelen, M., Ferdinandusse, S., et al. (2016) Zellweger Spectrum Disorders: Clinical Manifestations in Patients Surviving into Adulthood. Journal of Inherited Metabolic Dis-ease, 39, 93-106.
https://doi.org/10.1007/s10545-015-9880-2 |
[24] | Honey, M.I.J., Jaspers, Y.R.J., Engelen, M., et al. (2021) Molec-ular Biomarkers for Adrenoleukodystrophy: An Unmet Need. Cells, 10, Article 3427. https://doi.org/10.3390/cells10123427 |
[25] | Rey, F., Berardo, C., Maghraby, E., et al. (2023) Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants, 12, Article 965. https://doi.org/10.3390/antiox12040965 |
[26] | Jo, D.S., Park, N.Y. and Cho, D.H. (2020) Peroxisome Quality Con-trol and Dysregulated Lipid Metabolism in Neurodegenerative Diseases. Experimental and Molecular Medicine, 52, 1486-1495.
https://doi.org/10.1038/s12276-020-00503-9 |
[27] | Zhang, X., Yuan, T., Chen, X., et al. (2023) Effects of DHA on Cognitive Dysfunction in Aging and Alzheimer’s Disease: The Mediating Roles of ApoE. Progress in Lipid Research, 93, Article ID: 101256.
https://doi.org/10.1016/j.plipres.2023.101256 |
[28] | Xiao, M., Xiang, W., Chen, Y., et al. (2022) DHA Ameliorates Cognitive Ability, Reduces Amyloid Deposition, and Nerve Fiber Production in Alzheimer’s Disease. Frontiers in Nutri-tion, 9, Article 852433.
https://doi.org/10.3389/fnut.2022.852433 |
[29] | Abe, Y., Nishimura, Y., Nakamura, K., et al. (2020) Peroxisome Deficiency Impairs BDNF Signaling and Memory. Frontiers in Cell and Developmental Biology, 8, Article 567017. https://doi.org/10.3389/fcell.2020.567017 |
[30] | Jo, D.S. and Cho, D.H. (2019) Peroxisomal Dysfunction in Neuro-degenerative Diseases. Archives of Pharmacal Research, 42, 393-406. https://doi.org/10.1007/s12272-019-01131-2 |
[31] | Cook, K.C., Moreno, J.A., Jean Beltran, P.M., et al. (2019) Pe-roxisome Plasticity at the Virus-Host Interface. Trends in Microbiology, 27, 906-914. https://doi.org/10.1016/j.tim.2019.06.006 |
[32] | Xu, Z., Lodge, R., Power, C., et al. (2020) The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis. mBio, 11, e03395-19. https://doi.org/10.1128/mBio.03395-19 |
[33] | Ferreira, A.R., Marques, M., Ramos, B., et al. (2022) Emerging Roles of Peroxisomes in Viral Infections. Trends in Cell Biology, 32, 124-139. https://doi.org/10.1016/j.tcb.2021.09.010 |
[34] | Roczkowsky, A., Limonta, D., Fernandes, J.P., et al. (2023) COVID-19 Induces Neuroinflammation and Suppresses Peroxisomes in the Brain. Annals of Neurology, 94, 531-546. https://doi.org/10.1002/ana.26679 |
[35] | Kim, J.A. (2020) Peroxisome Metabolism in Cancer. Cells, 9, Article 1692. https://doi.org/10.3390/cells9071692 |
[36] | Walter, K.M., Sch?nenberger, M.J., Tr?tzmüller, M., et al. (2014) Hif-2Α Promotes Degradation of Mammalian Peroxisomes by Selective Autophagy. Cell Metabolism, 20, 882-897. https://doi.org/10.1016/j.cmet.2014.09.017 |
[37] | Di Cara, F., Savary, S., Kovacs, W.J., et al. (2023) The Peroxi-some: An Up-and-Coming Organelle in Immunometabolism. Trends in Cell Biology, 33, 70-86. https://doi.org/10.1016/j.tcb.2022.06.001 |
[38] | Cipolla, C.M. and Lodhi, I.J. (2017) Peroxisomal Dysfunction in Age-Related Diseases. Trends in Endocrinology and Metabolism, 28, 297-308. https://doi.org/10.1016/j.tem.2016.12.003 |
[39] | Zalckvar, E. and Schuldiner, M. (2022) Beyond Rare Disorders: A New Era for Peroxisomal Pathophysiology. Molecular Cell, 82, 2228-2235. https://doi.org/10.1016/j.molcel.2022.05.028 |
[40] | Wei, X., Hou, Y., Long, M., et al. (2023) Advances in Energy Metabolism in Renal Fibrosis. Life Sciences, 312, Article ID: 121033. https://doi.org/10.1016/j.lfs.2022.121033 |
[41] | Chen, C.T., Shao, Z. and Fu, Z. (2022) Dysfunctional Peroxisomal Lipid Metabolisms and Their Ocular Manifestations. Frontiers in Cell and Developmental Biology, 10, Article 982564. https://doi.org/10.3389/fcell.2022.982564 |
[42] | Fu, X., Wan, P., Lu, L., et al. (2023) Peroxisome Deficiency in Cochlear Hair Cells Causes Hearing Loss by Deregulating BK Channels. Advanced Science, 10, e2300402. https://doi.org/10.1002/advs.202300402 |
[43] | Che, X., Brydges, C.R., Yu, Y., et al. (2022) Metabolomic Evidence for Peroxisomal Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molec-ular Sciences, 23, Article 7906.
https://doi.org/10.3390/ijms23147906 |