全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乳腺X线摄影及其新技术结合人工智能在乳腺癌诊断中的应用
Application of Mammography and Its Novel Techniques Combined with AI in the Diagnosis of Breast Cancer

DOI: 10.12677/ACM.2024.143692, PP. 246-251

Keywords: 乳腺钼靶X线检查,人工智能,数字乳腺断层摄影,对比增强乳腺X线摄影,对比增强数字化乳腺断层摄影
Mammography
, Artificial Intelligence, Digital Breast Tomosynthesis, Contrast-Enhanced Mammography, Contrast-Enhanced Digital Breast Tomosynthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

乳腺癌是占我国女性发病率和死亡率首位的恶性肿瘤。早期发现、早期治疗不仅可以降低乳腺癌患者的死亡率,还可以提高患者五年生存率及生活质量。乳腺钼靶X线检查(mammography, MG)是目前唯一被证明可以降低乳腺癌患者死亡率的检查方法。其衍生出的数字乳腺断层摄影(digital breast tomosynthesis, DBT)、对比增强乳腺X线摄影(contrast-enhanced mammography, CEM)和对比增强数字化乳腺断层摄影(contrast-enhanced digital breast tomosynthesis, CEDBT)等新检查技术分别展现了独特的优势。人工智能(artificial intelligence, AI)作为当今科技发展的核心技术之一,在乳腺影像领域也取得了长足的进展。本文就人工智能结合乳腺X线检查及其新技术在乳腺癌诊断中的发展和应用现状进行分析及综述。
Breast cancer is the malignant tumour that accounts for the first place in the morbidity and mortal-ity among women in China. Early detection and treatment can reduce the mortality rate of breast cancer patients, in addition to improving their five-year survival rate and quality of life. Mammog-raphy (MG) is currently the only screening method proven to reduce the mortality rate of breast cancer patients. Its derivatives, such as digital breast tomosynthesis (DBT), contrast-enhanced mammography (CEM) and contrast-enhanced digital breast tomosynthesis (CEDBT) have shown unique advantages. As one of the core technologies in today’s scientific and technological develop-ment, artificial intelligence has also made great progress in the field of breast imaging. This article analyses and reviews the current development and application of AI combined with MG and its new techniques in breast cancer diagnosis.

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  Kashyap, D., Pal, D., Sharma, R., et al. 2022 () Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. BioMed Research International, 2022, Article ID: 9605439.
https://doi.org/10.1155/2022/9605439
[3]  Vanni, G., Pellicciaro, M., Materazzo, M., et al. (2020) Breast Cancer Diagnosis in Coronavirus-Era: Alert from Italy. Frontiers in Oncology, 10, Article 938.
https://doi.org/10.3389/fonc.2020.00938
[4]  Telli Melinda, L., Gradishar William, J. and Ward John, H. (2019) NCCN Guidelines Updates: Breast Cancer. Journal of the National Comprehensive Cancer Network, 17, 552-555.
[5]  国家卫生健康委员会医政医管局. 乳腺癌诊疗指南(2022年版) [J]. 中华肿瘤杂志, 2023, 45(10): 803-833.
[6]  Winsberg, F., Elkin, M., Josiah Macy, J., Bordaz, V. and Weymouth, W. (1967) Detection of Radio-graphic Abnormalities in Mammograms by Means of Optical Scanning and Computer Analysis. Radiology, 89, 211-215.
https://doi.org/10.1148/89.2.211
[7]  (2023) Breast-Cancer Screening Gets a Boost from AI. Nature, 620, Article 471.
https://doi.org/10.1038/d41586-023-02526-4
[8]  Freeman, K., Geppert, J., Stinton, C., et al. (2021) Use of Artifi-cial Intelligence for Image Analysis in Breast Cancer Screening Programmes: Systematic Review of Test Accuracy. BMJ, 374, n1872.
https://doi.org/10.1136/bmj.n1872
[9]  Mao, N., Yin, P., Wang, Q., Liu, M., Dong, J., Zhang, X., Xie, H. and Hong, N. (2019) Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study. Journal of the American College of Radiology, 16, 485-491.
https://doi.org/10.1016/j.jacr.2018.09.041
[10]  Kim, H.E., Kim, H.H., Han, B.K., et al. (2020) Changes in Cancer Detection and False-Positive Recall in Mammography Us-ing Artificial Intelligence: A Retrospective, Multireader Study. The Lancet Digit Health, 2, E138-E148.
https://doi.org/10.1016/S2589-7500(20)30003-0
[11]  Lauritzen, A.D., Rodríguez-Ruiz, A., Von Euler-Chelpin, M.C., Lynge, E., Vejborg, I., Nielsen, M., Karssemeijer, N. and Lillholm, M. (2022) An Artificial Intelligence-Based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload. Radiology, 304, 41-49.
https://doi.org/10.1148/radiol.210948
[12]  Bae, M.S. and Moon, W.K. (2018) Is Synthetic Mammography Com-parable to Digital Mammography for Detection of Microcalcifications in Screening? Radiology, 289, 639-640.
https://doi.org/10.1148/radiol.2018181961
[13]  Hofvind, S., Holen, ?.S., Aase, H.S., et al. (2019) Two-View Digital Breast Tomosynthesis versus Digital Mammography in a Population-Based Breast Cancer Screening Programme (To-Be): A Randomised, Controlled Trial. The Lancet Oncology, 20, 795-805.
https://doi.org/10.1016/S1470-2045(19)30161-5
[14]  Ikeda, D.M., Birdwell, R.L., O’Shaughnessy, K.F., Brenner, R.J. and, Sickles, E.A. (2003) Analysis of 172 Subtle Findings on Prior Normal Mammograms in Women with Breast Cancer Detected at Follow-Up Screening. Radiology, 226, 494-503.
https://doi.org/10.1148/radiol.2262011634
[15]  Su, X.H., Lin, Q., Cui, Ch.X., et al. (2017) Non-Calcified Ductal Carcinoma in Situ of The Breast: Comparison of Diagnostic Accuracy of Digital Breast Tomosynthesis, Digital Mam-mography, and Ultrasonography. Breast Cancer, 24, 562-570.
https://doi.org/10.1007/s12282-016-0739-7
[16]  Marinovich, M.L., Hunter, K.E., Macaskill, P. and Houssami, N. (2018) Breast Cancer Screening Using Tomosynthesis or Mammography: A Meta-Analysis of Cancer Detection and Recall. JNCI: Journal of the National Cancer Institute, 110, 942-949.
https://doi.org/10.1093/jnci/djy121
[17]  Bahl, M., Mercaldo, S., Dang, P.A., McCarthy, A.M., Lowry, K.P. and Lehman, C.D. (2020) Breast Cancer Screening with Digital Breast Tomosynthesis: Are Initial Benefits Sustained? Radiology, 295, 529-539.
https://doi.org/10.1148/radiol.2020191030
[18]  Kim, J.Y., Kang, H.J., Shin, J.K., et al. (2017) Biologic Profiles of Invasive Breast Cancers Detected Only with Digital Breast Tomosynthesis. American Journal of Roentgenology, 209, 1411-1418.
https://doi.org/10.2214/AJR.17.18195
[19]  L?ng, K. (2019) The Coming of Age of Breast Tomosyn-thesis in Screening. Radiology, 291, 31-33.
https://doi.org/10.1148/radiol.2019190181
[20]  Houssami, N. (2022) Should Tomosynthesis Replace Mammogra-phy for Breast Cancer Screening? The Lancet Oncology, 23, 554-555.
https://doi.org/10.1016/S1470-2045(22)00215-7
[21]  Herschorn, S.D, Zuckerman, S., Sprague, B., et al. (2020) Multicenter Evaluation of Breast Cancer Screening with Digital Breast Tomosynthesis in Combination with Synthetic versus Digital Mammography. Radiology, 297, 495-742.
https://doi.org/10.1148/radiol.2020200240
[22]  Balleyguier, C., Arfi-Rouche, J., Levy, L., et al. (2017) Improving Digital Breast Tomosynthesis Reading Time: A Pilot Multi-Reader, Multi-Case Study Using Concurrent Comput-er-Aided Detection (CAD). European Journal of Radiology, 97, 83-89.
https://doi.org/10.1016/j.ejrad.2017.10.014
[23]  Sauer, S.T., Christner, S.A., Kuhl, P.J., et al. (2023) Artifi-cial-Intelligence-Enhanced Synthetic Thick Slabs versus Standard Slices in Digital Breast Tomosynthesis. British Journal of Radiology, 96, Article ID: 20220967.
https://doi.org/10.1259/bjr.20220967
[24]  Dey, M., Ayan, B., Yurieva, M., Unutmaz, D. and Ozbolat, I.T. (2021) Studying Tumor Angiogenesis and Cancer Invasion in a Three-Dimensional Vascularized Breast Cancer Mi-cro-Environment. Advanced Biology, 5, e2100090.
https://doi.org/10.1002/adbi.202100090
[25]  Yuen, S., Monzawa, S., Gose, A., Yanai, S. and Yata, Y. (2022) Im-pact of Background Parenchymal Enhancement Levels on the Diagnosis of Contrast-Enhanced Digital Mammography in Evaluations of Breast Cancer: Comparison with Contrast-Enhanced Breast MRI. Breast Cancer, 29, 677-687.
https://doi.org/10.1007/s12282-022-01345-1
[26]  Fallenberg, E.M., Dromain, C., Diekmann, F., et al. (2014) Con-trast-Enhanced Spectral Mammography: Does Mammography Provide Additional Clinical Benefits or Can Some Radia-tion Exposure Be Avoided? Breast Cancer Research and Treatment, 146, 371-381.
https://doi.org/10.1007/s10549-014-3023-6
[27]  文婵娟, 徐维敏, 曾辉, 等. 对比增强X线摄影对乳腺可疑病变的诊断价值[J]. 中华放射学杂志, 2019, 53(9): 737-741.
[28]  Dromain, C., Balleyguier, C., Muller, S., et al. (2006) Evaluation of Tumor Angiogenesis of Breast Carcinoma Using Contrast-Enhanced Digital Mammography. American Journal of Roentgenology, 187, W528-W537.
https://doi.org/10.2214/AJR.05.1944
[29]  Sorin, V., Yagil, Y., Yosepovich, A., et al. (2018) Contrast-Enhanced Spectral Mammography in Women with Intermediate Breast Cancer Risk and Dense Breasts. American Journal of Roentgenology, 211, W267-W274.
https://doi.org/10.2214/AJR.17.19355
[30]  Sung, J.S., Lebron, L., Keating, D., et al. (2019) Performance of Du-al-Energy Contrastenhanced Digital Mammography for Screening Women at Increased Risk of Breast Cancer. Radiology, 293, 81-88.
https://doi.org/10.1148/radiol.2019182660
[31]  李鸿恩, 谢汉民, 吕培锋, 等. 对比增强能谱乳腺X线摄影征象与不同分子亚型乳腺癌的相关性[J]. 现代肿瘤医学, 2023, 31(21): 4008-4014.
[32]  Marino, M.A., Leithner, D., Sung, J., Avendano, D., et al. (2020) Radiomics for Tumor Characterization in Breast Cancer Patients: A Feasibility Study Comparing Contrast-Enhanced Mammography and Magnetic Resonance Imaging. Diagnostics, 10, Article 492.
https://doi.org/10.3390/diagnostics10070492
[33]  Petrillo, A., Fusco, R., Di Bernardo, E., et al. (2022) Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mam-mography. Cancers, 14, Article 2132.
https://doi.org/10.3390/cancers14092132
[34]  Huang, H., Scaduto, D.A., Liu, C., et al. (2019) Comparison of Contrast-Enhanced Digital Mammography and Contrast-Enhanced Digital Breast Tomosynthesis for Lesion Assessment. Journal of Medical Imaging, 6, Article ID: 031407.
https://doi.org/10.1117/1.JMI.6.3.031407
[35]  Chou, C.P., Lewin, J.M., Chiang, C.L., et al. (2015) Clinical Evaluation of Contrast-Enhanced Digital Mammography and Contrast Enhanced Tomosynthesis—Comparison to Contrast-Enhanced Breast MRI. European Journal of Radiology, 84, 2501-2508.
https://doi.org/10.1016/j.ejrad.2015.09.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133