全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

转移轨道空间辐射环境及效应研究
Study on the Space Radiation Environment and Effects for Transfer Orbit

DOI: 10.12677/JAST.2024.121002, PP. 8-13

Keywords: 辐射效应,空间环境,GTO
Radiation Effects
, Space Environment, GTO

Full-Text   Cite this paper   Add to My Lib

Abstract:

在各种类型的在轨任务中,转移轨道任务是最复杂的,在任务期间会遭遇复杂的空间环境,对于航天器和航天员都存在巨大的危险。本文针对转移轨道任务中涉及到的四种典型轨道进行模拟,使用MULASSIS程序计算各轨道总电离剂量和非电离剂量。结果表明:转移轨道为高椭圆轨道时卫星需要抵抗超高累积辐射剂量,当屏蔽厚度达到9 mm时对电子的屏蔽效能显著降低。当屏蔽厚度达到3 mm时对质子的屏蔽效能显著降低。本文相关计算结果可以有针对性的对不同类型的轨道任务采取有效的防护措施提供依据。
Among various types of in orbit missions, transfer orbit missions are the most complex, encountering complex space environments during the mission, posing great risks to both spacecraft and astronauts. This article simulates four typical orbits involved in transfer orbit missions and uses the MULASSIS program to calculate the total ionizing dose and non ionizing dose for each orbit. The results indicate that when the transfer orbit is a high elliptical orbit, the satellite needs to resist ultra-high accumulated radiation dose. When the shielding thickness reaches 9 mm, the shielding effectiveness of electrons is significantly reduced. When the shielding thickness reaches 3 mm, the shielding efficiency for protons significantly decreases. The relevant calculation results in this article can provide a basis for taking effective protective measures for different types of orbital missions with targeted measures.

References

[1]  Zhou, X., Zhang, L.F., Qiao, M., Yuan, Z., Luo, P., Shu, L., Li, Z. and Zhang, B. (2018) Investigation on To-tal-Ionizing- dose Radiation Response for High Voltage Ultra-Thin Layer SOI LDMOS. Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, 13-17 May 2018, 64-67.
https://doi.org/10.1109/ISPSD.2018.8393603
[2]  Shu, L., Wang, L., Zhou, X., Li, T.D., Yuan, Z.Y., Sui, C.L., Li, Y., Wang, B., Zhao, Y.F. and Galloway, K.F. (2019) Nume- rical and Experimental Investigation of TID Radia-tion Effects on the Breakdown Voltage of 400-V SOI NLDMOSFETs. IEEE Transactions on Nuclear Science, 66, 710-715.
https://doi.org/10.1109/TNS.2019.2905218
[3]  Shu, L., Zhao, Y.F., Galloway, K.F., Wang, L., Wang, X.S., Yuan, Z.Y., Zhou, X., Chen, W.P., Qiao, M. and Wang, T.Q. (2020) Effect of Drift Length on Shifts in 400-V SOI LDMOS Breakdown Voltage Due to TID. IEEE Transactions on Nuclear Science, 67, 2392-2395.
https://doi.org/10.1109/TNS.2020.2970743
[4]  Sajid, M., Chechenin, N.G., Sill Torres, F., et al. (2018) Analysis of Total Ionizing Dose Effects for Highly Scaled CMOS Devices in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 428, 30-37.
https://doi.org/10.1016/j.nimb.2018.05.014
[5]  Gruginskie, N., et al. (2021) Proton Irradiation Induced GaAs Solar Cell Performance Degradation Simulations Using a Physics-Based Model. Solar Energy Materials and Solar Cells, 223, 110971.
https://doi.org/10.1016/j.solmat.2021.110971
[6]  Mazouz, H., et al. (2019) Numerical Simulation of GaAs Solar Cells Aging under Electron and Proton Irradiation. IEEE Journal of Photovoltaics, 9, 1774-1782.
https://doi.org/10.1109/JPHOTOV.2019.2939886
[7]  Steffens, M., et al. (2017) Characterization of Novel Lightweight Radiation Shielding Materials for Space Applications. IEEE Transactions on Nuclear Science, 64, 2325-2332.
https://doi.org/10.1109/TNS.2017.2703312
[8]  Naito, M., et al. (2020) Investigation of Shielding Material Properties for Effective Space radiation proteCtion. Life Sciences in Space Research, 26, 69-76.
https://doi.org/10.1016/j.lssr.2020.05.001
[9]  Cheraghi, E., et al. (2023) Enhanced Electron Radiation Shielding Composite Developed by Well Dispersed Fillers in PDMS Polymer. Radiation Physics and Chemistry, 211, 110994.
https://doi.org/10.1016/j.radphyschem.2023.110994
[10]  Chen, S., Nambiar, S., Li, Z., et al. (2019) Bismuth Oxide-Based Nanocomposite for High-Energy Electron Radiation Shielding. Journal of Materials Science, 54, 3023-3034.
https://doi.org/10.1007/s10853-018-3063-0
[11]  Toyen, D., Rittirong, A., Poltabtim, W., et al. (2018) Flexible, Lead-Free, Gamma-Shielding Materials Based on Natural Rubber/Metal Oxide Composites. Iranian Polymer Journal, 27, 33-41.
https://doi.org/10.1007/s13726-017-0584-3
[12]  Zhang, Z., et al. (2023) Study on Radiation Shielding of Inner Radiation Belt Protons. IEEE Transactions on Nuclear Science, 70, 701-706.
https://doi.org/10.1109/TNS.2023.3255205
[13]  Truscott, P., Lei, F., Dyer, C., et al. (2000) Geant4—A New Monte Carlo Toolkit for Simulating Space Radiation Shielding and Effects. 2000 IEEE Radiation Effects Data Workshop. Workshop Record. Held in Conjunction with IEEE Nuclear and Space Radiation Effects Conference, Reno, 24-28 July 2000, 147-152.
[14]  蔡毓龙, 崔帅, 刘洋, 等. 内辐射带质子和电子被动屏蔽[J]. 核技术, 2023, 46(2): 63-69.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133