|
代谢组学在特发性肺间质纤维化中的研究进展
|
Abstract:
特发性肺纤维化(IPF)是一种慢性间质性肺疾病,进展迅速,预后较差。该疾病诊疗困难,目前缺乏特异性生物标志物。FDA批准的唯一疗法为吡非尼酮和尼达尼布,该药物可以改善肺功能丧失,延缓疾病进展,但它们并不能改善肺功能或提供完全治愈。随着老龄化的加剧,患病率、死亡率逐渐上升,因此早诊断、早治疗,对于缓解疾病进展改善预后至关重要。代谢组学技术的出现,有助于进一步明确疾病的发病机制,为寻找有意义的生物标志物及治疗靶点奠定基础。
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease that progresses rapidly and has a poor prognosis. Diagnosis and treatment of the disease are difficult, and specific biomarkers are currently lacking. The only FDA-approved treatments are pirfenidone and Nidanib, which im-prove loss of lung function and slow disease progression, but they do not improve lung function or provide a complete cure. With the intensification of aging, morbidity and mortality are gradually increasing, so early diagnosis and treatment are crucial to alleviate disease progression and im-prove prognosis. The emergence of metabolomics technology is helpful to further clarify the patho-genesis of diseases and lay a foundation for searching for meaningful biomarkers and therapeutic targets.
[1] | Ruaro, B., Salotti, A., Reccardini, N., et al. (2024) Functional Progression after Dose Suspension or Discontinuation of Nintedanib in Idiopathic Pulmonary Fibrosis: A Real-Life Multicentre Study. Pharmaceuticals (Basel, Switzerland), 17, Article No. 119. https://doi.org/10.3390/ph17010119 |
[2] | Sun, W., Ren, J., Jia, Z., et al. (2023) Untargeted Metabolomics Reveals Alterations of Rhythmic Pulmonary Metabolism in IPF. Metabolites, 13, Article No. 1069. https://doi.org/10.3390/metabo13101069 |
[3] | Spagnolo, P., Kropski, J.A., Jones, M.G., et al. (2021) Idiopathic Pulmonary Fibrosis: Disease Mechanisms and Drug Development. Pharmacology & Therapeutics, 222, Article ID: 107798.
https://doi.org/10.1016/j.pharmthera.2020.107798 |
[4] | King, T.E., Pardo, A. and Selman, M. (2011) Idiopathic Pulmonary Fibrosis. The Lancet (London, England), 378, 1949-1961. https://doi.org/10.1016/S0140-6736(11)60052-4 |
[5] | Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Patho-genesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology, 9, 157-179. https://doi.org/10.1146/annurev-pathol-012513-104706 |
[6] | 王海霞, 李红. 特发性肺间质纤维化的研究进展[J]. CJCM中医临床研究, 2017, 9(30): 9-12. |
[7] | Chambers, R.C. and Scotton, C.J. (2012) Coagulation Cascade Pro-teinases in Lung Injury and Fibrosis. Proceedings of the American Thoracic Society, 9, 96-101. https://doi.org/10.1513/pats.201201-006AW |
[8] | Zhao, Y.D., Yin, L., Archer, S., et al. (2017) Metabolic Hetero-geneity of Idiopathic Pulmonary Fibrosis: A Metabolomic Study. BMJ Open Respiratory Research, 4, E000183. https://doi.org/10.1136/bmjresp-2017-000183 |
[9] | Collard, H.R., Moore, B.B., Flaherty, K.R., et al. (2007) Acute Exacerbations of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 176, 636-643. https://doi.org/10.1164/rccm.200703-463PP |
[10] | Kottmann, R.M., Hogan, C.M., Phipps, R.P., et al. (2009) Determinants of Initiation and Progression of Idiopathic Pulmonary Fibrosis. Respirology, 14, 917-933. https://doi.org/10.1111/j.1440-1843.2009.01624.x |
[11] | Phan, T.H.G., Paliogiannis, P., Nasrallah, G.K., et al. (2021) Emerging Cellular and Molecular Determinants of Idiopathic Pulmonary Fibrosis. Cellular and Molecular Life Sciences, 78, 2031-2057.
https://doi.org/10.1007/s00018-020-03693-7 |
[12] | Saito, S., Alkhatib, A., Kolls, J.K., et al. (2019) Pharmacothera-py and Adjunctive Treatment for Idiopathic Pulmonary Fibrosis (IPF). Journal of Thoracic Disease, 11, S1740-S1754. https://doi.org/10.21037/jtd.2019.04.62 |
[13] | Ramírez-Martínez, G., Jiménez-álvarez, L.A., Cruz-Lagunas, A., et al. (2022) Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. Journal of In-terferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research, 42, 352-368.
https://doi.org/10.1089/jir.2021.0222 |
[14] | Hernandes, V.V., Barbas, C. and Dudzik, D. (2017) A Review of Blood Sample Handling and Pre-Processing for Metabolomics Studies. Electrophoresis, 38, 2232-2241. https://doi.org/10.1002/elps.201700086 |
[15] | Bossi, E., Limo, E., Pagani, L., et al. (2024) Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites, 14, Article No. 46.
https://doi.org/10.3390/metabo14010046 |
[16] | Demicheva, E., Dordiuk, V., Polanco Espino, F., et al. (2024) Ad-vances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Re-view. Metabolites, 14, Article No. 54.
https://doi.org/10.3390/metabo14010054 |
[17] | Gowda, G.A., Zhang, S., Gu, H., et al. (2008) Metabolomics-Based Methods for Early Disease Diagnostics. Expert Review of Molecular Diagnostics, 8, 617-633. https://doi.org/10.1586/14737159.8.5.617 |
[18] | Pang, H., Jia, W. and Hu, Z. (2019) Emerging Applications of Metabolomics in Clinical Pharmacology. Clinical Pharmacology and Therapeutics, 106, 544-556. https://doi.org/10.1002/cpt.1538 |
[19] | Wishart, D.S., Jewison, T., Guo, A.C., et al. (2013) HMDB 3.0—The Hu-man Metabolome Database in 2013. Nucleic Acids Research, 41, D801-D807. https://doi.org/10.1093/nar/gks1065 |
[20] | Washimkar, K.R., Tomar, M.S., Kulkarni, C., et al. (2023) Longitudinal Assessment of Bleomycin-Induced Pulmonary Fibrosis by Evaluating TGF-β1/Smad2, Nrf2 Signaling and Metabolomic Analysis in Mice. Life Sciences, 331, Article ID: 122064. https://doi.org/10.1016/j.lfs.2023.122064 |
[21] | Kastlmeier, M.T., Gonzalez-Rodriguez, E., Cabanis, P., et al. (2023) Cytokine Signaling Converging on IL11 in ILD Fibroblasts Provokes Aberrant Epithelial Differentiation Signatures. Frontiers in Immunology, 14, Article ID: 1128239.
https://doi.org/10.3389/fimmu.2023.1128239 |
[22] | Qiu, M., Qin, L., Dong, Y., et al. (2022) The Study of Metabo-lism and Metabolomics in a Mouse Model of Silica Pulmonary Fibrosis Based on UHPLC-QE-MS. Artificial Cells, Na-nomedicine, and Biotechnology, 50, 322-330.
https://doi.org/10.1080/21691401.2022.2124517 |
[23] | 谷俊朝. 甘氨酸保护作用机制与相关疾病探讨[J]. 北京医学, 2005, 27(9): 560-563. |
[24] | Zhang, M., Wang, W., Liu, K., et al. (2023) Astragaloside IV Protects against Lung Injury and Pulmonary Fibrosis in COPD by Targeting GTP-GDP Domain of RAS and Downregulating the RAS/RAF/FoxO Signaling Pathway. Phytomedicine, 120, Article ID: 155066. https://doi.org/10.1016/j.phymed.2023.155066 |
[25] | Odoom, J.P.L., Freeberg, M.A.T., Camus, S.V., et al. (2023) Exhaled Breath Condensate Identifies Metabolic Dysregulation in Patients with Radiation-Induced Lung Injury. American Journal of Physiology Lung Cellular and Molecular Physiology, 324, L863-L869. https://doi.org/10.1152/ajplung.00439.2022 |
[26] | Ackermann, M., Kamp, J.C., Werlein, C., et al. (2022) The Fatal Trajectory of Pulmonary COVID-19 Is Driven by Lobular Ischemia and Fibrotic Remodelling. EBioMedicine, 85, Article ID: 104296.
https://doi.org/10.1016/j.ebiom.2022.104296 |
[27] | Zhang, J., Zhang, M., Zhang, W.H., et al. (2022) Total Flavo-noids of Inula Japonica Alleviated the Inflammatory Response and Oxidative Stress in LPS-Induced Acute Lung Injury via Inhibiting the SEH Activity: Insights from Lipid Metabolomics. Phytomedicine, 107, Article ID: 154380. https://doi.org/10.1016/j.phymed.2022.154380 |
[28] | Xue, C., Wu, N., Fan, Y., et al. (2021) Distinct Metabolic Features in the Plasma of Patients with Silicosis and Dust-Exposed Workers in China: A Case-Control Study. BMC Pulmonary Medicine, 21, Article No. 91.
https://doi.org/10.1186/s12890-021-01462-1 |
[29] | Rindlisbacher, B., Schmid, C., Geiser, T., et al. (2018) Serum Metabolic Profiling Identified a Distinct Metabolic Signature in Patients with Idiopathic Pulmonary Fibrosis—A Potential Biomarker Role for LysoPC. Respiratory Research, 19, Article No. 7. https://doi.org/10.1186/s12931-018-0714-2 |
[30] | Chen, I.C., Liu, Y.C., Wu, Y.H., et al. (2022) Evaluation of Pro-teasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis. Cells, 11, Article No. 1543. https://doi.org/10.3390/cells11091543 |
[31] | Gibson, C.D., Kugler, M.C., Deshwal, H., et al. (2020) Advances in Targeted Therapy for Progressive Fibrosing Interstitial Lung Disease. Lung, 198, 597-608. https://doi.org/10.1007/s00408-020-00370-1 |
[32] | 李双, 叶俏. 特发性肺纤维化的组学研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(2): 153-160. |