全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肺癌预测模型及其进展
Lung Cancer Prediction Model and Its Progression

DOI: 10.12677/ACM.2024.143671, PP. 98-104

Keywords: 肺肿瘤,预测模型,人工智能
Lung Neoplasms
, Prediction Model, Artificial Intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract:

肺癌是我国及世界范围内发病率和死亡率最高的恶性肿瘤之一。随着低剂量计算机断层扫描的普及,我国肺癌的检出率逐年升高,全球癌症生存趋势监测报告数据显示,2000~2014年间肺癌的年龄标化5年生存率波动在10%~20%之间,在中国,肺癌的年龄标化5年生存率在2003~2015年间略有上升的趋势,但仍低于20.0%;2012~2015年中国人群肺癌的5年生存率仅为19.7%。影响肺癌5年生存率的关键因素在于临床诊断时的肿瘤分期。临床研究数据显示,早期肺癌的5年生存率可达61.2%,其中小于1 cm的I期肺癌的5年生存率达92%;而晚期肺癌的5年生存率仅7.0%。因此,早期诊断对于改善肺癌患者的预后至关重要。然而,中国肺癌病例的诊断以晚期居多,早期诊断率较低。预计至2025年,我国每年新发的肺癌患者将达到100万,其中约有75%的肺癌患者就诊时已属晚期,形成了发病率高、病死率高、5年存活率低的“二高一低”特点。肺癌发病时间较短且致病原因复杂,可在短时间内病灶转移,早期阶段以肺结节的形式存在,常因为其隐匿性而错过了最佳的治疗时间,而肺癌相关的预测模型的研究也在近些年较为热门,因为其有助于帮助患者早期诊断肺部结节的良恶倾向,本文主要讨论肺癌相关预测模型的应用和其和人工智能相结合的发展。
Lung cancer is one of the most common malignant tumors with the highest morbidity and mortality in China and worldwide. With the popularity of low-dose computed tomography, the detection rate of lung cancer in China has increased year by year. According to the Global Cancer Survival Trend Monitoring Report, the age-standardized 5-year survival rate of lung cancer fluctuated between 10% and 20% from 2000 to 2014. In China, the age-standardized 5-year survival rate of lung cancer showed a slight upward trend from 2003 to 2015, but it was still lower than 20.0%; the 5-year sur-vival rate of lung cancer in the Chinese population was only 19.7% from 2012 to 2015. The key fac-tor affecting the 5-year survival rate of lung cancer is the tumor stage at the time of clinical diagno-sis. Clinical research data show that the 5-year survival rate of early lung cancer can reach 61.2%, among which the 5-year survival rate of stage I lung cancer with a size less than 1 cm is 92%, while the 5-year survival rate of stage III lung cancer is only 7.0%. Therefore, early diagnosis is crucial for improving the prognosis of lung cancer patients. However, the diagnosis of lung cancer cases in Chi-na is mainly in late stage, and the early diagnosis rate is low. It is estimated that by 2025, the num-ber of new lung cancer patients in China will reach 1 million annually, and about 75% of them are in late stage at the time of diagnosis, forming the characteristics of high morbidity, high mortality, and low 5-year survival rate. Lung cancer has a short onset time and complex pathogenic factors, and the lesions can metastasize in a short time. In the early stage, they exist in the form of pulmonary nodules, which often miss the best treatment time because of their insidiousness. In recent years, the research on lung cancer-related prediction models has become popular, because they help pa-tients diagnose the benign and malignant tendency of pulmonary nodules in an early stage. This paper mainly discusses the application and development of

References

[1]  罗汶鑫, 杨澜, 王成弟, 等. 肺癌筛查与早期诊断的研究现状与挑战[J]. 中国科学: 生命科学, 2022, 52(11): 1603-1611.
[2]  Bade, B.C. and Dela Cruz, C.S. (2020) Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clinics in Chest Medicine, 41, 1-24.
https://doi.org/10.1016/j.ccm.2019.10.001
[3]  国家癌症中心发布最新一期全国癌症统计数据[J]. 上海护理, 2022, 22(4): 72.
[4]  兰蓝, 李晓松, 周婷, 等. 中国疾病经济负担测量——以2008年数据为例[J]. 中国卫生事业管理, 2017, 34(2): 123-127.
[5]  樊淼, 郭乾乾, 李之淳, 等. 2009-2020年中国西部地区政府医疗卫生支出效率分析[J]. 现代预防医学, 2023, 50(10): 1831-1836.
https://doi.org/10.20043/j.cnki.mpm.202211224
[6]  Gould, M.K., Fletcher, J., Iannettoni, M.D., Lynch, W.R., Midthun, D.E., Naidich, D.P., Ost, D.E. and American College of Chest Physicians (2007) Evaluation of Patients with Pulmonary Nodules: When Is It Lung Cancer? ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). Chest, 132, 108S-130S.
https://doi.org/10.1378/chest.07-1353
[7]  Liao, Z., Zheng, R. and Shao, G. (2022) A Lung Cancer Risk Prediction Model for Nonsmokers: A Retrospective Analysis of Lung Nodule Co-horts in China. Journal of Clinical Laboratory Analysis, 36, E24748.
https://doi.org/10.1002/jcla.24748
[8]  Brenner, A.V., Wang, Z., Kleinerman, R.A., Lei, S., Metayer, C., Wang, W. and Lubin, J.H. (2003) Menstrual and Reproductive Factors and Risk of Lung Cancer among Chinese Women, Eastern Gansu Province, 1994-1998. Journal of Epidemiology, 13, 22-28.
https://doi.org/10.2188/jea.13.22
[9]  Toh, C.K., Gao, F., Lim, W.T., Leong, S.S., Fong, K.W., Yap, S.P., Hsu, A.A., Eng, P., Koong, H.N., Thirugnanam, A. and Tan, E.H. (2006) Nev-er-Smokers with Lung Cancer: Epidemiologic Evidence of a Distinct Disease Entity. Journal of Clinical Oncology, 24, 2245-2251.
https://doi.org/10.1200/JCO.2005.04.8033
[10]  Nemlander, E., Rosenblad, A., Abedi, E., Ekman, S., Has-selstr?m, J., Eriksson, L.E. and Carlsson, A.C. (2022) Lung Cancer Prediction Using Machine Learning on Data from a Symp-tom E-Questionnaire for Never Smokers, Formers Smokers and Current Smokers. PLOS ONE, 17, E0276703.
https://doi.org/10.1371/journal.pone.0276703
[11]  Swensen, S.J., Silverstein, M.D., Ilstrup, D.M., Schleck, C.D. and Edell, E.S. (1997) The Probability of Malignancy in Solitary Pulmonary Nodules. Application to Small Radiologically Indeter-minate Nodules. Archives of Internal Medicine, 157, 849-855.
https://doi.org/10.1001/archinte.1997.00440290031002
[12]  Gould, M.K., Ananth, L., Barnett, P.G. and Veterans Affairs SNAP Cooperative Study Group (2007) A Clinical Model to Estimate the Pretest Probability of Lung Cancer in Patients with Solitary Pulmonary Nodules. Chest, 131, 383-388.
https://doi.org/10.1378/chest.06-1261
[13]  Swensen, S.J., Silverstein, M.D., Edell, E.S., Trastek, V.F., Aughenbaugh, G.L., Ilstrup, D.M. and Schleck, C.D. (1999) Solitary Pulmonary Nodules: Clinical Prediction Model versus Physicians. Mayo Clinic Proceedings, 74, 319-329.
https://doi.org/10.4065/74.4.319
[14]  Wu, Z., Huang, T., Zhang, S., Cheng, D., Li, W. and Chen, B. (2021) A Prediction Model to Evaluate the Pretest Risk of Malignancy in Solitary Pulmonary Nodules: Evidence from a Large Chinese Southwestern Population. Journal of Cancer Research and Clinical Oncology, 147, 275-285.
https://doi.org/10.1007/s00432-020-03408-2
[15]  Yang, D., Zhang, X., Powell, C.A., Ni, J., Wang, B., Zhang, J., Zhang, Y., Wang, L., Xu, Z., Zhang, L., Wu, G., Song, Y., Tian, W., Hu, J.A., Zhang, Y., Hu, J., Hong, Q., Song, Y., Zhou, J. and Bai, C. (2018) Probability of Cancer in High-Risk Patients Predicted by the Protein-Based Lung Cancer Biomarker Panel in China: LCBP Study. Cancer, 124, 262-270.
https://doi.org/10.1002/cncr.31020
[16]  Zheng, Y., Fang, Z., Xue, Y., Zhang, J., Zhu, J., Gao, R., Yao, S., Ye, Y., Wang, S., Lin, C., Chen, S., Huang, H., Hu, L., Jiang, G.N., Qin, H., Zhang, P., Chen, J. and Ji, H. (2020) Specific Gut Microbiome Signature Predicts the Early-Stage Lung Cancer. Gut Microbes, 11, 1030-1042.
https://doi.org/10.1080/19490976.2020.1737487
[17]  Sattar, M., Majid, A., Kausar, N., Bilal, M. and Kashif, M. (2022) Lung Cancer Prediction Using Multi-Gene Genetic Programming by Selecting Automatic Features from Amino Acid Sequences. Computational Biology and Chemistry, 98, Article ID: 107638.
https://doi.org/10.1080/19490976.2020.1737487
[18]  Liao, Z., Zheng, R. and Shao, G. (2022) A Lung Cancer Risk Pre-diction Model for Nonsmokers: A Retrospective Analysis of Lung Nodule Cohorts in China. Journal of Clinical Laboratory Analysis, 36, E24748.
https://doi.org/10.1002/jcla.24748
[19]  Li, Y., Wu, X., Yang, P., Jiang, G. and Luo, Y. (2022) Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics Proteomics Bioinformatics, 20, 850-866.
https://doi.org/10.1016/j.gpb.2022.11.003
[20]  Yin, X., Liao, H., Yun, H., Lin, N., Li, S., Xiang, Y. and Ma, X. (2022) Artificial Intelligence-Based Prediction of Clinical Outcome in Immunotherapy and Targeted Therapy of Lung Cancer. Seminars in Cancer Biology, 86, 146-159.
https://doi.org/10.1016/j.semcancer.2022.08.002
[21]  Mayerhoefer, M.E., Materka, A., Langs, G., H?ggstr?m, I., Szczypiński, P., Gibbs, P. and Cook, G. (2020) Introduction to Radiomics. Journal of Nuclear Medicine, 61, 488-495.
https://doi.org/10.2967/jnumed.118.222893
[22]  Choi, E.R., Lee, H.Y., Jeong, J.Y., Choi, Y.L., Kim, J., Bae, J., Lee, K.S. and Shim, Y.M. (2016) Quantitative Image Variables Reflect the Intratumoral Pathologic Heterogeneity of Lung Adenocarcino-ma. Oncotarget, 7, 67302-67313.
https://doi.org/10.18632/oncotarget.11693
[23]  Zhang, R., Wei, Y., Wang, D., Chen, B., Sun, H., Lei, Y., Zhou, Q., Luo, Z., Jiang, L., Qiu, R., Shi, F. and Li, W. (2023) Deep Learning for Malignancy Risk Estimation of Incidental Sub-Centimeter Pulmonary Nodules on CT Images. European Radiology.
https://doi.org/10.1007/s00330-023-10518-1
[24]  Xu, Y., Hosny, A., Zeleznik, R., Parmar, C., Coroller, T., Franco, I., Mak, R.H. and Aerts, H.J.W.L. (2019) Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clinical Cancer Research, 25, 3266-3275.
https://doi.org/10.1158/1078-0432.CCR-18-2495

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133