|
基于新的组合模型的短期风速预测
|
Abstract:
鉴于风速序列呈现高度随机和不稳定的特性,本文构建了一个新的组合模型用于短期风速预测,该模型由粒子群优化–时变滤波–经验模态分解(PSO-TVF-EMD)、排列熵(PE)、长短期记忆网络(LSTM)和自回归差分移动平均(ARIMA)组成。首先利用PSO-TVF-EMD算法将原始风速序列分解为若干模态分量,以简化风速序列的复杂性;其次,使用PE把风速子模态分为高频序列和低频序列,并对这两种序列分别构建LSTM和ARIMA预测模型;最终,将子序列预测结果叠加,得出最终的风速预测值。试验结果表明,新的组合预测模型一定程度上增加了预测的精度。
In view of the highly random and unstable characteristics of wind speed series, a new combined model is constructed for short-term wind speed prediction. The model consists of particle swarm optimization-time-varying filtering-empirical mode decomposition (PSO-TVF-EMD), permutation entropy (PE), long-short term memory network (LSTM) and auto regressive integrated moving average (ARIMA). Firstly, the original wind speed series are decomposed into several modal components by using PSO-TVF-EMD algorithm to simplify the complexity of the wind speed series, and secondly, the wind speed sub-modes are divided into high frequency series and low frequency series by using PE algorithm, the LSTM and ARIMA prediction models are constructed for the two series, and the wind speed prediction values are obtained by superim-posing the results of the sub-series. The experimental results show that the new combined forecasting model increases the forecasting precision to some extent.
[1] | Sim, S.K., Maass, P. and Lind, P.G. (2018) Wind Speed Modeling by Nested ARIMA Processes. Energies, 12, 69.
https://doi.org/10.3390/en12010069 |
[2] | Tian, Z. and Chen, H. (2021) Multi-Step Short-Term Wind Speed Prediction Based on Integrated Multi-Model Fusion. Applied Energy, 298, Article ID: 117248. https://doi.org/10.1016/j.apenergy.2021.117248 |
[3] | Zhang, Y., Chen, B., Zhao, Y., et al. (2018) Wind Speed Prediction of IPSO-BP Neural Network Based on Lorenz Disturbance. IEEE Access, 6, 53168-53179. https://doi.org/10.1109/ACCESS.2018.2869981 |
[4] | 魏昱洲, 许西宁. 基于LSTM长短期记忆网络的超短期风速预测[J]. 电子测量与仪器学报, 2019, 33(2): 64-71. |
[5] | 赵征, 汪向硕, 乔锦涛. 基于VMD和改进ARIMA模型的超短期风速预测[J]. 华北电力大学学报(自然科学版), 2019, 46(1): 54-59. |
[6] | 王贺, 陈蕻峰, 熊敏, 等. 融合CEEMDAN和ICS-LSTM的短期风速预测建模[J]. 电子测量与仪器学报, 2022, 36(4): 17-23. https://doi.org/10.13382/j.jemi.B2104894 |
[7] | 向玲, 刘佳宁, 苏浩, 胡爱军, 朱泽宁. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339. |
[8] | 王俊, 李霞, 周昔东, 张凯. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45-52. |
[9] | Li, H., Li, Z. and Mo, W. (2017) A Time Varying Filter Approach for Empirical Mode Decomposition. Signal Processing, 138, 146-158. https://doi.org/10.1016/j.sigpro.2017.03.019 |
[10] | 王文川, 高畅, 徐雷. 基于TVF-EMD与LSTM神经网络耦合的月径流预测研究[J]. 中国农村水利水电, 2022(2): 76-81+89. |