全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑多配送中心的外卖配送路径优化研究
Optimisation of Takeaway Delivery Routes Considering Multiple Distribution Centres

DOI: 10.12677/ORF.2024.141089, PP. 960-976

Keywords: 多配送中心,动态调度,混合遗传蚁群算法
Multiple Distribution Centres
, Dynamic Scheduling, Hybrid Genetic Ant Colony Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

外卖配送作为外卖平台运行中的重要部分,外卖配送的路径规划会直接影响外卖平台的经营效益和品牌影响力。本文以多个配送中心、多个商家和顾客组成的外卖配送系统为研究对象,综合考虑外卖配送运输成本、固定成本、出餐时间成本以及时间窗惩罚成本,加入单位车辆承载量上限和分段软时间窗约束等条件,以成本最小和顾客满意度最大为目标,构建了适合外卖专送模式下多配送中心的外卖配送路径优化的预优化模型和动态调整模型,并设计与之对应的混合遗传蚁群算法和遗传算法分别求解模型。最后通过算例分析和算法对比分析,验证本文构建模型的可行性和算法的有效性,为外卖行业管理决策提供参考。
As an important part of takeaway delivery in the operation of takeaway platforms, the path planning of takeaway delivery will directly affect the operational efficiency and brand influence of takeaway platforms. This paper takes the takeaway delivery system composed of multiple distribution centres, multiple merchants and customers as the research object, comprehensively considers the transportation cost, fixed cost, meal delivery time cost and time window penalty cost of takeaway delivery, adds the upper limit of the carrying capacity of the unit vehicle and the soft time window constraints of the segments, and constructs a pre-optimization model and a dynamic adjustment model suitable for the takeaway delivery of multiple distribution centres under the mode of takeaway delivery, with the goal of minimizing the cost and maximizing the satisfaction of customers. A pre-optimisation model and a dynamic adjustment model for route optimisation are constructed, and the corresponding hybrid genetic ant colony algorithm and genetic algorithm are designed to solve the model respectively. Finally, the feasibility of the model and the effectiveness of the algorithm are verified through case analysis and algorithm comparison analysis, which provide reference for the management decision of takeaway industry.

References

[1]  Kartal, Z., Hasgul, S. and Ernst, T.A. (2017) Single Allocation P-Hub Median Location and Routing Problem with Simultaneous Pick-Up and Delivery. Transportation Research Part E, 108, 141-159.
https://doi.org/10.1016/j.tre.2017.10.004
[2]  Kunnapapdeelert, S. and Kachitvichyanukul, V. (2018) New Enhanced Dif-ferential Evolution Algorithms for Solving Multi-Depot Vehicle Routing Problem with Multiple Pickup and Delivery Requests. International Journal of Services and Operations Management, 31, 370-395.
https://doi.org/10.1504/IJSOM.2018.095562
[3]  Wang, Y., Yuan, Y., Guan, X., et al. (2019) Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles under Time Windows. Sustainability, 11, 3492-3492.
https://doi.org/10.3390/su11123492
[4]  Nepomuceno, N., Saboia, B.R. and Pinheiro, R.P. (2019) A Fast Randomized Algorithm for the Heterogeneous Vehicle Routing Problem with Simultaneous Pickup and Delivery. Algorithms, 12, 158-158.
https://doi.org/10.3390/a12080158
[5]  Shi, Y., Zhou, Y., Boudouh, T., et al. (2020) A Lexicographic-Based Two-Stage Algorithm for Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Window. Engineering Applications of Artificial Intelligence, 95, 103901.
https://doi.org/10.1016/j.engappai.2020.103901
[6]  Pavlova, S.E. and Shichiyakh, A.R. (2021) A Robust Mathematical Model for Vehicle Routing Problem with Simultaneous Pickup and Delivery and Worker Allocation. Industrial Engineering & Management Systems, 20, 201-212.
https://doi.org/10.7232/iems.2021.20.2.201
[7]  Zhou, H.Q., et al. (2022) Two-Echelon Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery. Soft Computing, 26, 1-16.
https://doi.org/10.1007/s00500-021-06712-2
[8]  Yichen, L., Chao, Y. and Jun, Y. (2022) A Multi-Objective Humanitarian Pickup and Delivery Vehicle Routing Problem with Drones. Annals of Operations Research, 319, 291-353.
https://doi.org/10.1007/s10479-022-04816-y
[9]  Qinge, G., and Nengmin, W. (2023) The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods. Mathematics, 11, 311-311.
https://doi.org/10.3390/math11020311
[10]  Teng, R., Tianyu, L., Binbin, J., et al. (2023) Improved Ant Colony Optimization for the Vehicle Routing Problem with Split Pickup and Split Delivery. Swarm and Evolutionary Computation, 77, 101228.
https://doi.org/10.1016/j.swevo.2023.101228
[11]  熊浩, 鄢慧丽. 数据驱动外卖平台智能派单的实现机理研究[J]. 南开管理评论, 2022, 25(2): 15-25.
[12]  杨浩雄, 高晶, 邵恩露. 考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题[J]. 计算机科学, 2022, 49(S1): 191-198.
[13]  夏忠宇. 基于遗传算法求解带时间窗的外卖配送车辆路径问题研究[J]. 电工技术, 2023(6): 80-83.
[14]  高椿林, 张维存, 许建. 考虑员工满意度的多目标外卖订单配送路径优化研究[J]. 河北工业大学学报, 2023, 52(1): 86-96.
[15]  吴廷映, 陶新月, 孟婷. “卡车 + 无人机”模式下带时间窗的取送货车辆路径问题[J]. 计算机集成制造系统, 2023, 29(7): 2440-2448.
[16]  李熠胥, 胡蓉, 吴绍云, 等. 三阶段拉格朗日启发式算法求解带同时取送货的绿色车辆路径问题[J]. 控制与决策, 2023, 38(2): 3525-3533.
[17]  周雅兰, 廖易天, 粟筱, 等. 深度强化学习Memetic算法求解取送货车辆路径问题[J/OL]. 计算机科学与探索: 1-18. http://kns.cnki.net/kcms/detail/11.5602.tp.20230717.1822.002.html, 2023-07-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133