|
等能量树的新判定方法
|
Abstract:
设G和G'是一对非同谱图,当它们的特征值不能用根式表达的时候,证明它们等能量是一个非常具有挑战性的问题。但是对于树而言,此问题可借助韦达定理将其转换为证明一个代数方程有唯一的正实根。
Let G and G' be a pair of noncospectral graphs. It is a challenge problem to prove G and G' are equienergetic when their eigenvalues cannot be expressed in radicals. But for trees, this problem can be deduced to proving a specific algebraic equation with a positive root by Vieta’s theorem.
[1] | Li, X., Shi, Y. and Gutman, I. (2012) Graph Energy. Springer, New York.
https://doi.org/10.1007/978-1-4614-4220-2 |
[2] | Miljkovi?, O., Furtula, B., Radenkovic, S., et al. (2009) Equienergetic and Almost-Equienergetic Trees. Match Communications in Mathematical and in Computer Chemistry, 61, 451-461. |
[3] | Xu, H. and Yan, W. (2022) On Eigenvalues and the Energy of Dendrimer Trees. Applied Mathematics and Computation, 424, Article ID: 127051. https://doi.org/10.1016/j.amc.2022.127051 |
[4] | Dorel, L. and Openhaim, E. (2022) Developing Mathematical Proof: Back to the Future with Vieta Extended Theorem. Creative Education, 13, 3298-3310. https://doi.org/10.4236/ce.2022.1310211 |
[5] | Zheng, R., Su, P. and Jin, X. (2023) Arithmetic-Geometric Ma-trix of Graphs and Its Applications. Applied Mathematics and Computation, 442, Article ID: 127764. https://doi.org/10.1016/j.amc.2022.127764 |
[6] | Wang, X. (2004) A Simple Proof of Descartes’s Rule of Signs. The American Mathematical Monthly, 111, Article No. 525. https://doi.org/10.1080/00029890.2004.11920108 |
[7] | Zorich, V.A. and Paniagua, O. (2016) Mathematical Analysis II. Springer, Berlin.
https://doi.org/10.1007/978-3-662-48993-2 |
[8] | Stankovic, I., Milosevic, M. and Stevanovic, D. (2009) Small and Not so Small Equienergetic Graphs. Match, 61, Article No. 443. |