全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CBAM-ResNet50模型的水果图像识别
Fruit Image Recognition Based on CBAM-ResNet50 Model

DOI: 10.12677/SEA.2024.131007, PP. 61-72

Keywords: ResNet50网络,混合注意力机制,迁移学习,数据增广,水果图像识别
ResNet50 Network
, Hybrid Attention Mechanism, Transfer Learning, Data Augmentation, Fruit Image Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统水果分类识别精度低,人工成本高等问题,提出一种基于CBAM-ResNet50模型的水果图像识别算法。首先,采用迁移学习技术,将ImageNet数据集上训练好的权重参数迁移到ResNet50网络水果图像分类模型中,保留卷积层和池化层,去掉分类器,作为主干网络模型;其次,在主干网络模型后添加混合注意力机制模块,根据不同的输入特征分配不同权重,提取有效特征,忽略无关信息。然后,用全局平均池化(GlobalAvgPool2D)替换平均池化,将高维数据转化为低维数据,提高计算效率并简化模型训练过程。最后,添加dropout正则化,随机失活权重参数比例,以确保网络对噪声和异常值的鲁棒性,构建Batch Normalization层对输入数据进行归一化,帮助网络更好地学习数据信息的特征分布,进而提高网络模型性能。把收集到的水果图像按照随机取样的方法划分为80%训练集和20%测试集两部分,采用旋转、平移和裁剪等技术扩充水果图像数据集的多样性和变化性,本文提出CBAM-ResNet50网络模型与MobileNet-v3、VGG16、AlexNet、Xception、ResNet50网络模型的识别效果进行对比,试验结果表明,该模型能够有效识别出几种常见的水果图像,相较于初始网络,识别准确率增加了6个百分点,测试准确率高达99%。为了进一步验证模型性能,分析了基于迁移学习下的数据集扩充与未扩充,添加混合注意力机制对网络模型的影响,由此得出,该研究方法在水果分类识别中具有很好的实践意义。
In response to the traditional fruit classification recognition accuracy and high labor cost, a fruit image recognition algorithm based on the CBAM-ResNet50 model is proposed. First of all, use migration learning technology to migrate the trained weight parameters trained on the ImageNet data set to the ResNet50 network fruit image classification model, retain the convolutional layer and pool layer, and remove the classifier as the main network model; second, in the main network of the main network, After the model, add a hybrid attention mechanism module, allocate different weights according to different input features, extract effective features, and ignore irrelevant information. Then, the average pooling is replaced with global average pooling (GLOBALAVGP- OOL2D), high -dimensional data is converted into low-dimensional data, increasing the calculation efficiency and simplifying the model training process. Finally, add Dropout regularization, randomly loss weight parameters ratio to ensure that the network has a robustness of noise and abnormal values, and builds the Batch Normalization layer to naturalize the input data to help the network better learn the characteristic distribution of data information. , By improve the performance of network models. The collected fruit images are divided into two parts: 80%training set and 20%test set in accordance with the method of random sampling. The diversity and variation of fruit image data sets are expanded by technology such as rotation, translation and cutting. The network model is compared with the recognition effects of MobileNet-V3, VGG16, Alexnet, Xception, and ResNet50 network model. The test results show that the model can effectively identify several common fruit images. Compared with the initial network, the accuracy rate of recognition has increased. 6 percentage points, the test accuracy rate is as high as 99%. In order to further verify the performance

References

[1]  唐世裔, 钟高峰, 钟少伟. 特色水果高产优质栽培新技术[M]. 长沙: 湖南科学技术出版社, 2017: 255.
[2]  Chen, J., Han, J., Liu, C., et al. (2022) A Deep-Learning Method for the Classification of Apple Varieties via Leaf Images from Different Growth Periods in Natural Environment. Symmetry, 14, Article No. 1671.
https://doi.org/10.3390/sym14081671
[3]  吕伟. 基于稀疏表示和卷积神经网络的水果图像分类与实现[D]: [硕士学位论文]. 广州: 华南农业大学, 2016.
[4]  Dubey, S.R. and Jalal, A.S. (2012) Robust Approach for Fruit and Vegetable Classification. Procedia Engineering, 38, 3449-3453.
https://doi.org/10.1016/j.proeng.2012.06.398
[5]  Muhammad, G. (2015) Date Fruits Classification Using Texture Descriptors and Shape-Size Features. Engineering Applications of Artificial Intelligence, 37, 361-367.
https://doi.org/10.1016/j.engappai.2014.10.001
[6]  卢巍. 基于K-means聚类的计算机视觉下杨梅水果图像识别[J]. 现代计算机, 2022, 28(8): 78-81.
[7]  (美)弗朗索瓦·肖莱. Python深度学习 人工智能 Deep Learning with Python 中文版[M]. 张亮, 译. 北京: 人民邮电出版社, 2018.
[8]  Zhang, Y.D., Satapathy, S.C. and Wang, S.H. (2022) Fruit Category Classification by Fractional Fourier Entropy with Rotation Angle Vector Grid and Stacked Sparse Autoencoder. Expert Systems, 39, e12701.
https://doi.org/10.1111/exsy.12701
[9]  Majid, A., Khan, M.A., Alhaisoni, M., et al. (2022) An Integrated Deep Learning Framework for Fruits Diseases Classification. Computers, Materials & Continua, 71, 1387-1402.
https://doi.org/10.32604/cmc.2022.017701
[10]  王前程. 基于深度学习的水果图像识别算法研究[D]: [硕士学位论文]. 保定: 河北大学, 2016
[11]  Wang, S.-H. and Chen, Y. (2020) Fruit Category Classification via an Eight-Layer Convolutional Neural Network with Parametric Rectified Linear Unit and Dropout Technique. Multimedia Tools and Applications, 79, 15117-15133.
https://doi.org/10.1007/s11042-018-6661-6
[12]  Jahanbakhshi, A., Momeny, M., Mahmoudi, M., et al. (2021) Waste Management Using an Automatic Sorting System for Carrot Fruit Based on Image Processing Technique and Improved Deep Neural Networks. Energy Reports, 7, 5248-5256.
https://doi.org/10.1016/j.egyr.2021.08.028
[13]  谭笑枫, 李广帅. 深度学习发展综述[C]//第十五届国家安全地球物理专题研讨会论文集. 北京: 清华大学出版社, 2019: 244-252.
[14]  朱佳欣. 基于机器学习的图像检索算法研究111[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018.
[15]  Szegedy, C., Liu, W., Jia, Y., et al. (2015) Going Deeper with Convolutions. The Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 1-9.
https://doi.org/10.1109/CVPR.2015.7298594
[16]  Weiss, K., Khoshgoftaar, T.M. and Wang, D.D. (2016) A Survey of Transfer Learning. Journal of Big Data, 3, 1-40.
https://doi.org/10.1186/s40537-016-0043-6
[17]  李乔宇, 尚明华, 王富军, 等. 基于Scrapy的农业网络数据爬取[J]. 山东农业科学, 2018, 50(1): 142-147.
[18]  张航, 程清, 武英洁, 等. 一种基于卷积神经网络的小麦病害识别方法[J]. 山东农业科学, 2018, 50(3): 137-141.
[19]  黎英, 宋佩华. 迁移学习在医学图像分类中的研究进展[J]. 中国图象图形学报, 2022, 27(3): 672-686.
[20]  邵浩著. 迁移学习理论与实践[M]. 上海: 上海交通大学出版社, 2013: 121.
[21]  He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. The Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[22]  任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
[23]  祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362.
[24]  皇甫晓瑛, 钱惠敏, 黄敏. 结合注意力机制的深度神经网络综述[J]. 计算机与现代化, 2023(2): 40-49+57.
[25]  李清格, 杨小冈, 卢瑞涛, 等. 计算机视觉中的Transformer发展综述[J]. 小型微型计算机系统, 2023, 44(4): 850-861.
[26]  杨环宇, 王军, 吴祥, 等. 一种坐标通道注意力深度学习网络的军用飞机识别方法[J]. 兵工学报, 2023: 1-15.
[27]  邹建. 基于卷积注意力特征迁移学习的滚动轴承故障诊断[J]. 计算机测量与控制, 2024, 32(1): 23-29.
[28]  林海波, 卢元栋, 丁荣诚, 等. 基于图像处理与改进SVM的苹果多特征融合分级方法[J]. 山东农业科学, 2022, 54(6): 141-149.
[29]  赵小阳, 李仲年, 王文玉, 等. ADIC: 一种面向可解释图像识别的自适应解纠缠CNN分类器[J]. 计算机研究与发展, 2023, 60(8): 1754-1767.
[30]  李大湘, 张玥. 基于多尺度CNN特征的国画图像分类算法[J]. 西安邮电大学学报, 2021, 26(1): 104-110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133