全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于交通流预测的多图融合与延迟对齐动态图卷积网络
Multi-Graph Fusion with Delay-Aligned Dynamic Graph Convolutional Network for Traffic Flow Prediction

DOI: 10.12677/ORF.2024.141079, PP. 856-871

Keywords: 交通流预测,多图融合,延迟传播,动态图卷积
Traffic Flow Forecasting
, Multi-Graph Fusion, Delayed Propagation, Dynamic Graph Convolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

交通流预测的根本挑战是如何高效捕获复杂而又动态的时空相关性。大多数研究所采用的时空图神经网络以静态方式捕获道路节点间的时空相关性,忽视了交通状况在不同节点间传播具有时间延迟的特性,难以建模隐藏动态关联。为此,提出多图融合与延迟对齐动态图卷积网络(MGF-DA-DGCN),该网络设计了一个延迟对齐模块来捕获由于传播延迟而损失的空间信息。其次引入一种新的多图融合方法,在构造的多图基础上生成新的动态图结构,增强模型对空间异质性的捕获能力,模拟节点间动态关联。最后将多图融合动态图卷积嵌入到交互式学习结构中,在多个时间分辨率下同步捕获并共享时空相关性。三个公共交通流数据集与11种基线模型的实验结果表明,MGF-DA-DGCN具有最优的预测性能。
The principal challenge in predicting traffic flow is efficiently capturing the complex and dynamic spatial-temporal dependence. The majority of studies that have utilized spatial-temporal graph neural networks have focused on capturing the spatial-temporal correlations between road nodes in a static manner. However, this approach overlooks the fact that there is a time delay in the propagation of traffic conditions between different nodes, and as such can make modeling the hidden dynamic correlations between them difficult. To address these challenges, a multi-graph fusion and delay-aligned dynamic graph convolutional network (MGF-DA-DGCN) was proposed. The model designed a delay-aligned module to capture the spatial information lost due to propagation delay. Furthermore, a new multi-graph fusion method was introduced to generate a dynamic graph structure based on the constructed multi-graph. This approach enhanced the model’s ability to capture spatial heterogeneity and simulate the dynamic association between nodes. Finally, the multi-graph fusion dynamic graph convolution was embedded in the interactive learning structure to synchronously capture and share spatiotemporal correlation at multiple time resolutions. Experimental results from three public transportation flow datasets and 11 baseline models indicate that MGF-DA-DGCN yields the most accurate predictions.

References

[1]  Yin, X., Wu, G., Wei, J., et al. (2021) Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions. IEEE Transactions on Intelligent Transportation Systems, 23, 4927-4943.
https://doi.org/10.1109/TITS.2021.3054840
[2]  刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85.
[3]  Hochreiter, S. and Schmidhuber J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[4]  Rui, F., Zhang, Z. and Li, L. (2016) Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, 11-13 November 2016, 324-328.
[5]  Wu, Z., Pan, S., et al. (2019) Graph Wavenet for Deep Spatial-Temporal Graph Modeling. ArXiv:1906.00121.
https://doi.org/10.24963/ijcai.2019/264
[6]  Ruotsalo, T., Peltonen, J., Eugster, M.J.A., et al. (2015) Scinet: Interactive Intent Modeling for Information Discovery. Proceedings of the 38th International ACM SIGIR Con-ference on Research and Development in Information Retrieval, Santiago Chile, 9-13 August 2015, 1043-1044.
https://doi.org/10.1145/2766462.2767863
[7]  Bai, L., Yao, L., Li, C., et al. (2020) Adaptive Graph Convo-lutional Recurrent Network for Traffic Forecasting. Advances in Neural Information Processing Systems, 33, 17804-17815.
[8]  Ye, J., Zhao, J., Ye, K., et al. (2020) Multi-Stgcnet: A Graph Convolution Based Spa-tial-Temporal Framework for Subway Passenger Flow Forecasting. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, 19-24 July 2020, 1-8.
https://doi.org/10.1109/IJCNN48605.2020.9207049
[9]  Guo, S., Lin, Y., Feng, N., et al. (2019) Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Fore-Casting. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 922-929.
https://doi.org/10.1609/aaai.v33i01.3301922
[10]  Zheng, C., Fan, X., Wang, C., et al. (2020) Gman: A Graph Multi-Attention Network for Traffic Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 1234-1241.
https://doi.org/10.1609/aaai.v34i01.5477
[11]  Zivot, E. and Wang, J. (2006) Vector Autoregres-sive Models for Multivariate Time Series. Modeling Financial Time Series with S-PLUS?, Springer, New York, 385-429.
[12]  Drucker, H., Burges, C.J., Kaufman, L., et al. (1996) Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, MIT Press, Cambridge, 155-161.
[13]  Li, C.L., Cui, Z., Zheng, W.M., et al. (2018) Spatio-Temporal Graph Convolution for Skeleton Based Action Recognition. ArXiv:1802.09834.
https://doi.org/10.1609/aaai.v32i1.11776
[14]  Li, Y., Yu, R., Shahabi, C., et al. (2017) Diffusion Convolu-tional Recurrent Neural Network: Data-Driven Traffic Forecasting. ArXiv:1707.01926.
[15]  Song, C., Lin, Y.F., Guo, S.N., et al. (2020) Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for SpatialTemporal Network Data Forecasting. Proc of the 34th AAAI Conference on Artificial Intelligence, Palo Alto, CA: AAAI Press, 34, 914-921.
https://doi.org/10.1609/aaai.v34i01.5438

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133