全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CNN-Transformer-GRU-Att的车辆换道意图识别
Vehicle Lane-Changing Intent Recognition Based on CNN-Transformer-GRU-Att

DOI: 10.12677/ORF.2024.141075, PP. 806-822

Keywords: 换道意图识别,深度学习,Transformer模型,门控神经单元网络,注意力机制,智能交通
Lane Changing Intent Recognition
, Deep Learning, Transformer Model, Gated Neural Unit Network, Attention Mechanism, Intelligent Transportation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在当前自动驾驶车辆与传统车辆并存的复杂交通环境中,快速准确地识别车辆换道意图能够帮助自动驾驶系统做出更加安全舒适的操作决策。本文首先采用扩展卡尔曼滤波方法对车辆轨迹数据进行筛选并平滑处理,再基于航向角的变化对车辆驾驶行为分类并标注驾驶意图。然后,为了充分考虑车辆之间交互作用、高效提取换道过程的时序连续特征以及捕捉车辆行驶轨迹序列中局部和长期依赖性,本文构建了一种基于CNN-Transformer-GRU-Att的车辆换道意图识别模型,将目标车辆和周围车辆的行驶数据信息作为输入,实验结果表明,本文所提模型对车辆换道意图的准确率为91.38%,推理耗时为10.08 s,多种评价指标显著优于其他模型。此外消融实验证明引入的Transformer模块、GRU层和注意力机制能够分别提高3.19%,5.07%和1.08%的准确率。最后分析模型输入车辆历史行驶轨迹序列的不同长度下的意图识别结果,模型可在车辆换道前2 s内能以89%以上的准确率识别换道意图。
In the current complex traffic environment where self-driving vehicles and traditional vehicles coexist, fast and accurate identification of vehicle lane changing intention can help the self-driving system make safer and more comfortable operation decisions. Firstly, the vehicle trajectory data are first filtered and smoothed using the extended Kalman filter method. Secondly, vehicle driving behavior was classified based on changes in heading angle and labeled with driving intentions. Thirdly, a vehicle lane change intention recognition model based on CNN-Transformer-GRU-Att was constructed to fully consider inter-vehicle interactions, efficiently extract time-continuous features of the lane-changing process, and capture local and long-term dependencies in the sequence of vehicle trajectories. Taking as input the information on the traveling data of the target vehicle and the surrounding vehicles, it was proved that the model proposed in this paper has an accuracy of 91.38% for the intention of vehicles to change lanes, with an inference time of 10.08 s. A variety of evaluation indexes are significantly better than those of other models. Fourthly, the ablation experiments demonstrated that the introduced Transformer module, GRU layer and attention mechanism can help the model to improve the accuracy by 3.19%, 5.07% and 1.08% respectively. Finally, the results of intent recognition under different lengths of the historical vehicle trajectory sequences inputted into the model demonstrated the model can recognize the intent to change lanes within 2 seconds before the vehicle changes lanes with an accuracy of more than 89%.

References

[1]  Li, G., Li, S.E., Cheng, B., et al. (2017) Estimation of Driving Style in Naturalistic Highway Traffic Using Maneuver Transition Probabilities. Transportation Research Part C: Emerging Technologies, 74, 113-125.
https://doi.org/10.1016/j.trc.2016.11.011
[2]  Liu, A. and Pentland, A. (1997) Towards Real-Time Recognition of Driver Intentions. IEEE Conference on Intelligent Transportation System, Boston, 9-12 November 1997, 236-241.
[3]  Pentland, A. and Liu, A. (1999) Modeling and Prediction of Human Behavior. Neural Computation, 11, 229-242.
https://doi.org/10.1162/089976699300016890
[4]  宗长富, 王畅, 何磊, 等. 基于双层隐式马尔科夫模型的驾驶意图辨识[J]. 汽车工程, 2011, 33(8): 701-706.
[5]  Jin, L., Hou, H. and Jiang, Y. (2011) Driver Intention Recognition Based on Continuous Hidden Markov Model. Proceedings 2011 International Conference on Trans-portation, Mechanical, and Electrical Engineering, Changchun, 16-18 December 2011, 739-742.
https://doi.org/10.1109/TMEE.2011.6199308
[6]  曲文奇. 交通车辆驾驶行为识别与轨迹预测方法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2021.
[7]  宋晓琳, 郑亚奇, 曹昊天. 基于HMM-SVM的驾驶员换道意图辨识研究[J]. 电子测量与仪器学报, 2016, 30(1): 58-65.
[8]  Li, K., Wang, X., Xu, Y., et al. (2016) Lane Changing Intention Recognition Based on Speech Recognition Models. Transportation Research Part C Emerging Technol-ogies, 69, 497-514.
https://doi.org/10.1016/j.trc.2015.11.007
[9]  Li, F., et al. (2014) Driving Intention In-ference Based on Dynamic Bayesian Networks. In: Wen, Z.K. and Li, T.R., Eds., Practical Applications of Intelligent Systems, Springer, Berlin, 1109-1119.
https://doi.org/10.1007/978-3-642-54927-4_106
[10]  Schlechtriemen, J., Wirthmueller, F., Wedel, A., et al. (2015) When Will It Change the Lane? A Probabilistic Regression Approach for Rarely Occurring Events. 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, 28 June-1 July 2015, 1373-1379.
https://doi.org/10.1109/IVS.2015.7225907
[11]  Morris, B., Doshi, A. and Trivedi, M. (2011) Lane Change Intent Prediction for Driver Assistance: On-Road Design and Evaluation. 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, 5-9 June 2011, 895-901.
https://doi.org/10.1109/IVS.2011.5940538
[12]  Doshi, A., Morris, B. and Trivedi, M. (2011) On-Road Pre-diction of Driver’s Intent with Multimodal Sensory Cues. IEEE Pervasive Computing, 10, 22-34.
https://doi.org/10.1109/MPRV.2011.38
[13]  Lethaus, F., et al. (2011) Using Pattern Recognition to Predict Driver Intent. International Conference on Adaptive and Natural Computing Algorithms, Ljubljana, 14-16 April 2011, 140-149.
https://doi.org/10.1007/978-3-642-20282-7_15
[14]  Kumar, P., et al. (2013) Learning-Based Approach for Online Lane Change Intention Prediction. 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, 23-26 June 2013, 797-802.
https://doi.org/10.1109/IVS.2013.6629564
[15]  黑凯先, 曲大义, 周警春, 等. 基于随机森林决策树的行驶车辆换道行为识别[J]. 青岛理工大学学报, 2020, 41(1): 115-120.
[16]  Patel, S., Griffin, B., Kusano, K., et al. (2018) Predicting Future Lane Changes of Other Highway Vehicles Using RNN-Based Deep Models.
[17]  Scheel, O., Nagaraja, N.S., Schwarz, L., et al. (2019) Attention-Based Lane Change Prediction. 2019 International Conference on Robotics and Automation (ICRA), Montreal, 20-24 May 2019, 8655-8661.
https://doi.org/10.1109/ICRA.2019.8793648
[18]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[19]  季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42.
[20]  Zyner, A., Worrall, S. and Nebot, E. (2018) A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections. IEEE Robotics and Automation Letters, 3, 1759-1764.
https://doi.org/10.1109/LRA.2018.2805314
[21]  Jain, A., et al. (2016) Brain4cars: Car That Knows before You Do via Sensory-Fusion Deep Learning Architecture.
[22]  Xie, D.F., Fang, Z.Z., Jia, B., et al. (2019) A Da-ta-Driven Lane Changing Model Based on Deep Learning. Transportation Research Part C: Emerging Technologies, 106, 41-60.
https://doi.org/10.1016/j.trc.2019.07.002
[23]  刘晨强. 车辆轨迹数据与换道行为特性研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2018.
[24]  Lee, S.E., Olsen, E.C.B. and Wierwille, W.W. (2004) A Com-prehensive Examination of Naturalistic Lane-Changes. Virginia Tech Transportation Institute, Blacksburg.
https://doi.org/10.1037/e733232011-001
[25]  何仁, 赵晓聪, 杨奕彬, 等. 基于驾驶人风险响应机制的人机共驾模型[J]. 吉林大学学报(工学版), 2021, 51(3): 799-809.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133