|
Material Sciences 2024
一种嵌入钴铁合金的氮掺杂碳纳米管应用于锌空气电池
|
Abstract:
开发一种高活性、高稳定性的可逆析氧/氧还原反应(OER/ORR)双功能非贵金属电催化剂对于可充电锌–空气电池的商业化至关重要。在此,我们通过简单的热解策略,成功地构建了一种嵌入CoFe合金N掺杂碳纳米管(CoFe-NCNTs)的强效双功能氧电催化剂。钴铁合金作为双功能催化剂中最为优异的活性位点,而N掺杂碳纳米管又在增强导电性以及串联各个活性位点方面有着卓越的表现。因此,CoFe-NCNTs在ORR (E1/2 = 0.88 V)和OER (EJ=10 = 324 mV)分别表现出优异的氧催化性能。此外,基于CoFe-NCNTs的水性锌–空气电池的开路电压高达1.59 V,功率密度高达168 mW?cm?2,充放电稳定性高达800 h。
The development of a highly active and stable bifunctional non-precious metal electrocatalyst for reversible oxygen precipitation/oxygen reduction reaction (OER/ORR) is crucial for the commercialisation of rechargeable zinc-air batteries. Here, we successfully constructed a potent bifunctional oxygen electrocatalyst embedded with CoFe alloy N-doped carbon nanotubes (CoFe-NCNTs) by a simple pyrolysis strategy. The CoFe alloy serves as the most excellent active site in the bifunctional catalyst, and the N-doped carbon nanotubes are excellent in enhancing the elec-trical conductivity as well as tandemly connecting the individual active sites. As a result, CoFe-NCNTs exhibited excellent oxygen catalysis performance at ORR (E1/2 = 0.88 V) and OER (EJ=10 = 324 mV), respectively. In addition, the aqueous zinc-air batteries based on CoFe-NCNTs exhibited an open-circuit voltage as high as 1.59 V, a power density as high as 168 mW?cm?2, and a charge/discharge stability of up to 800 h.
[1] | Lv, X., Wang, Z., Lai, Z., Liu, Y., Ma, T., Geng, J. and Yuan, Z. (2023) Rechargeable Zinc-Air batteries: Advances, Challenges, and Prospects. Small, 15, Article ID: 2306396. https://doi.org/10.1002/smll.202306396 |
[2] | Fu, J., Cano, Z.P., Park, M.G., Yu, A., Fowler, M. and Chen, Z. (2017) Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 29, Article ID: 1604685.
https://doi.org/10.1002/adma.201604685 |
[3] | Chen, X., Liu, J., Jiang, H., Zhan, C., Gao, Y., Li, J., Zhang, H., Cao, X., Dou, S. and Xiao, Y. (2024) Metal-Organic Framework-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Recent Advances and Perspectives. Energy Storage Materials, 14, Article ID: 103168. https://doi.org/10.1016/j.ensm.2023.103168 |
[4] | Fu, J., Cano, Z.P., Park, M.G., Yu, A.P., Fowler, M. and Chen, Z.W. (2017) Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 29, Article ID: 1604685.
https://doi.org/10.1002/adma.201604685 |
[5] | Leong, K., Wang, Y., Ni, M., Pan, W., Luo, S. and Leung, D.Y. (2022) Rechargeable Zn-Air batteries: Recent Trends and Future Perspectives. Renewable and Sustainable Energy Re-views, 154, Article ID: 111771.
https://doi.org/10.1016/j.rser.2021.111771 |
[6] | Huang, H., Liang, Q., Guo, H., Wang, Z., Yan, G., Wu, F. and Wang, J. (2024) Spray Pyrolysis Regulated FeCo Alloy Anchoring on Nitrogen-Doped Carbon Hollow Spheres Boost the Performance of Zinc-Air Batteries. Small, Article ID: 2310318. https://doi.org/10.1002/smll.202310318 |
[7] | Liu, K., Li, J., Liu, Y., Wang, M. and Cui, H. (2023) Dual Metal At-om Catalysts: Advantages in Electrocatalytic Reactions. Journal of Energy Chemistry, 79, 515-534. https://doi.org/10.1016/j.jechem.2023.01.021 |
[8] | Cheng, C., Sun, Z., Li, B., Li, Y., Jin, C., Xiang, T., Wang, W., Wu, Z., Xue, H., Cao, Y. and Yang, J. (2023) Unveiling the Inter-Molecular Charge Transfer Mechanism of N-Doped Graphene/Carbon Nanotubes Heterostructure toward Oxygen Reduction Process for Zn-Air Battery. Applied Surface Science, 614, Article ID: 156096.
https://doi.org/10.1016/j.apsusc.2022.156096 |
[9] | Xu, C., Niu, Y., Gong, S., Liu, X., Xu, M., Liu, T. and Chen, Z. (2022) Integrating Bimetal Alloy into N-Doped Carbon Nanotubes@ Nanowires Superstructure for Zn-Air Batteries. ChemSusChem, 15, e202200312.
https://doi.org/10.1002/cssc.202200312 |
[10] | Wen, J.K., Li, X.F., Liu, Y.J., Yang, M., Liu, B., Chen, H.B. and Li, H.M. (2022) Facile Crafting of Ultralong N-Doped Carbon Nanotube Encapsulated with FeCo Nanoparticles as Bifunc-tional Electrocatalyst for Rechargeable Zinc-Air batteries. Microporous and Mesoporous Materials, 336, Article ID: 111850.
https://doi.org/10.1016/j.micromeso.2022.111850 |
[11] | Yang, X., Zheng, X., Li, H., Luo, B., He, Y., Yao, Y., Zhou, H., Yan, Z., Kuang, Y. and Huang, Z. (2022) Non- Noble-Metal Catalyst and Zn/Graphene Film for Low-Cost and Ultra-Long-Durability Solid-State Zn-Air Batteries in Harsh Electrolytes. Advanced Functional Materials, 32, Article ID: 2200397. https://doi.org/10.1002/adfm.202200397 |
[12] | Chen, Z., Zou, Y., Chen, H., Zhang, K. and Hui, B. (2023) Bamboo-Modulated Helical Carbon Nanotubes for Rechargeable Zn-Air Battery. Small, Article ID: 2307776. https://doi.org/10.1002/smll.202307776 |
[13] | Chen, D., Li, G., Chen, X., Zhang, Q., Sui, J., Li, C., Zhang, Y., Hu, J., Yu, J., Yu, L. and Dong, L. (2021) Developing Nitrogen and Co/Fe/Ni Multi-Doped Carbon Nanotubes as High-Performance Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Journal of Colloid and Interface Science, 593, 204-213. https://doi.org/10.1016/j.jcis.2021.02.115 |
[14] | Shu, X., Chen, S., Chen, S., Pan, W. and Zhang, J. (2020) Cobalt Nitride Embedded Holey N-Doped Graphene as Advanced Bifunctional Electrocatalysts for Zn-Air Batteries and Overall Water Splitting. Carbon, 157, 234-243.
https://doi.org/10.1016/j.carbon.2019.10.023 |