|
川崎病基因易感性及临床诊断中的生物标志物
|
Abstract:
川崎病是一种急性、自限性的全身血管炎症综合征,主要影响5岁以下婴幼儿,现已成为儿童后天获得性心脏病的最主要原因,其中最严重的并发症是冠状动脉病变,可导致冠状动脉扩张、心肌梗死及猝死。因此早期诊断尤其重要,可以有效降低患儿冠状动脉病变发生率。近年来对川崎病早期诊断的生物标志物开展了许多研究,现就相关研究的进展综述如下。
Kasasaki disease (KD) is an acute, self-limiting systemic vascular syndrome that mainly occurs in infants and children under the age of five years, and has become the leading cause of the acquired heart disease in children, which the most serious complication is coronary artery disease, that can lead to coronary dilaton, myocardial infarction and death. So early diagnosis is critically important, which can effectively reducing the incidence of coronary artery disease. In recent years, many studies have been conducted on biomakers for the early diagnosis of KD. The article reviews the progress of the related studies.
[1] | Agarwal, S. and Agrawal, D.K. (2016) Kawasaki Disease: Etiopathogenesis and Novel Treatment Strategies. Expert Review of Clinical Immunology, 13, 247-258. https://doi.org/10.1080/1744666X.2017.1232165 |
[2] | Yang, F., Ao, X., Ding, L., et al. (2022) Non-Coding RNAs in Kawasaki Disease: Molecular Mechanisms and Clinical Implications. BioEssays, 44, Article 2100256. https://doi.org/10.1002/bies.202100256 |
[3] | 张新艳, 杨婷婷, 何婷, 等. 2012至2016年单中心川崎病流行病学及临床特征研究[J]. 中国循证儿科杂志, 2018, 13(6): 427-433. |
[4] | 杜忠东, 陈笑征. 川崎病流行病学研究进展[J]. 中国实用儿科杂志, 2017, 32(8): 565-569. |
[5] | Kuo, H.-C. (2023) Diagnosis, Progress, and Treatment Update of Kawasaki Disease. International Journal of Molecular Sciences, 24, Article 13948. https://doi.org/10.20944/preprints202308.0766.v1 |
[6] | Dominguez, S.R., Martin, B., Heizer, H., et al. (2016) Procalcitonin (PCT) and Kawasaki Disease: Does PCT Correlate with IVIG-Resistant Disease, Admission to the Inten-sive Care Unit, Or Development of Coronary Artery Lesions? Journal of the Pediatric Infectious Diseases Society, 5, 297-302. https://doi.org/10.1093/jpids/piv019 |
[7] | Li, X., Chen, Y., Tang, Y., et al. (2018) Predictors of Intrave-nous Immunoglobulin-Resistant Kawasaki Disease in Children: A Meta-Analysis of 4442 Cases. European Journal of Pediatrics, 177, 1279-1292.
https://doi.org/10.1007/s00431-018-3182-2 |
[8] | Chaudhary, H., Nameirakpam, J., Kumrah, R., et al. (2019) Bi-omarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Frontiers in Pediatrics, 7, Article 242. https://doi.org/10.3389/fped.2019.00242 |
[9] | Zhou, Y., Wu, Y., Yuan, C., et al. (2023) The Expression of Au-tophagy Markers in IVIG-Resistant Kawasaki Disease and the Establishment of Prediction Model. BMC Pediatrics, 23, Article No. 642.
https://doi.org/10.1186/s12887-023-04386-3 |
[10] | Yang, Y., Hu, X. and Wu, X. (2022) The Predictive Values of MMP-9, PLTs, ESR, and CRP Levels in Kawasaki Disease with Cardiovascular Injury. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6913315.
https://doi.org/10.1155/2022/6913315 |
[11] | Kim, S.H., Hwang, I.J. and Cho, Y.K. (2022) Platelet Indices as Di-agnostic Marker for Kawasaki Disease. Chonnam Medical Journal, 58, 110-118. https://doi.org/10.4068/cmj.2022.58.3.110 |
[12] | Esposito, S., Polinori, I. and Rigante, D. (2019) The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Frontiers in Pediatrics, 7, Article 124. https://doi.org/10.3389/fped.2019.00124 |
[13] | Hu, X., Fan, R., Song, W., et al. (2022) Landscape of Intestinal Microbiota in Patients with IgA Nephropathy, IgA Vasculitis and Kawasaki Disease. Frontiers in Cellular and Infection Microbiology, 12, Article 1061629.
https://doi.org/10.3389/fcimb.2022.1061629 |
[14] | Nagata, S., Yamashiro, Y., Ohtsuka, Y., et al. (2009) Heat Shock Proteins and Superantigenic Properties of Bacteria from the Gastrointestinal Tract of Patients with Kawasaki Disease. Immunology, 128, 511-520.
https://doi.org/10.1111/j.1365-2567.2009.03135.x |
[15] | Zeng, Q., Zeng, R. and Ye, J. (2023) Alteration of the Oral and Gut Microbiota in Patients with Kawasaki Disease. PeerJ, 11, e15662. https://doi.org/10.7717/peerj.15662 |
[16] | Lin, K.H., Chang, S.S., Yu, C., et al. (2015) Usefulness of Natriuretic Peptide for the Diagnosis of Kawasaki Disease: A Systematic Review and Meta-Analysis. BMJ Open, 5, e006703. https://doi.org/10.1136/bmjopen-2014-006703 |
[17] | Dionne, A. and Dahdah, N. (2018) A Decade of NT-proBNP in Acute Kawasaki Disease, from Physiological Response to Clinical Relevance. Children, 5, Article 141. https://doi.org/10.3390/children5100141 |
[18] | Nir, A., Lindinger, A., Rauh, M., et al. (2008) NT-Pro-B-Type Na-triuretic Peptide in Infants and Children: Reference Values Based on Combined Data from Four Studies. Pediatric Cardiology, 30, 3-8.
https://doi.org/10.1007/s00246-008-9258-4 |
[19] | Rusnati, M., Borsotti, P., Moroni, E., et al. (2019) The Calci-um-Binding Type III Repeats Domain of Thrombospondin-2 Binds to Fibroblast Growth Factor 2 (FGF2). Angiogenesis, 22, 133-144.
https://doi.org/10.1007/s10456-018-9644-3 |
[20] | Yang, S., Song, R., Li, X., et al. (2018) Thrombospondin-2 Pre-dicts Response to Treatment with Intravenous Immunoglobulin in Children with Kawasaki Disease. BMJ Paediatrics Open, 2, e000190.
https://doi.org/10.1136/bmjpo-2017-000190 |
[21] | Seki, M. and Minami, T. (2022) Kawasaki Disease: Pathology, Risks, and Management. Vascular Health and Risk Management, 18, 407-416. https://doi.org/10.2147/VHRM.S291762 |
[22] | Yu, X., Hirono, K.-I., Ichida, F., et al. (2004) Enhanced INOS Ex-pression in Leukocytes and Circulating Endothelial Cells Is Associated with the Progression of Coronary Artery Lesions in Acute Kawasaki Disease. Pediatric Research, 55, 688-694. https://doi.org/10.1203/01.PDR.0000113464.93042.A4 |
[23] | Xiong, Y., Xu, J., Zhang, D., et al. (2022) MicroRNAs in Kawasaki Disease: An Update on Diagnosis, Therapy and Monitoring. Frontiers in Immunology, 13, Ar-ticle 1016575. https://doi.org/10.3389/fimmu.2022.1016575 |
[24] | Liu, C., Yang, D., Wang, H., et al. (2021) MicroRNA-197-3p Mediates Damage to Human Coronary Artery Endothelial Cells via Targeting TIMP3 in Kawasaki Disease. Molecular and Cellular Biochemistry, 476, 4245-4263.
https://doi.org/10.1007/s11010-021-04238-7 |
[25] | Son, D.J., Jung, Y.Y., Seo, Y.S., et al. (2017) Interleukin-32α Inhibits Endothelial Inflammation, Vascular Smooth Muscle Cell Activation, and Atherosclerosis by Upregulating Timp3 and Reck through Suppressing MicroRNA-205 Biogenesis. Theranostics, 7, 2186-2203. https://doi.org/10.7150/thno.18407 |
[26] | Wu, R., Shen, D., Sohun, H., et al. (2018) MiR-186, a Serum MicroRNA, Induces Endothelial Cell Apoptosis by Targeting SMAD6 in Kawasaki Disease. International Journal of Molecular Medicine, 41, 1899-1908.
https://doi.org/10.3892/ijmm.2018.3397 |
[27] | Wu, M.-H., Lin, M.-T., Chen, H.-C., et al. (2017) Postnatal Risk of Acquiring Kawasaki Disease: A Nationwide Birth Cohort Database Study. The Journal of Pediatrics, 180, 80-86.e2. https://doi.org/10.1016/j.jpeds.2016.09.052 |
[28] | Rong, X., Ge, D., Shen, D., et al. (2018) miR-27b Suppresses Endothelial Cell Proliferation and Migration by Targeting Smad7 in Kawasaki Disease. Cellular Physiology and Bio-chemistry, 48, 1804-1814.
https://doi.org/10.1159/000492354 |
[29] | Chu, M., Wu, R., Qin, S., et al. (2017) Bone Marrow-Derived MicroRNA-223 Works as an Endocrine Genetic Signal in Vascular Endothelial Cells and Participates in Vascular Injury from Kawasaki Disease. Journal of the American Heart Association, 6, e004878. https://doi.org/10.1161/JAHA.116.004878 |
[30] | He, M., Chen, Z., Martin, M., et al. (2017) miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition. Circulation Research, 120, 354-365. https://doi.org/10.1161/CIRCRESAHA.116.310233 |
[31] | Qiu, Y., Zhang, Y., Li, Y., et al. (2022) Molecular Mechanisms of Endothelial Dysfunction in Kawasaki-Disease-Associated Vasculitis. Frontiers in Cardiovascular Medicine, 9, Article 981010. https://doi.org/10.3389/fcvm.2022.981010 |
[32] | Zhang, W., Wang, Y., Zeng, Y., et al. (2017) Serum miR-200c and miR-371-5p as the Useful Diagnostic Biomarkers and Therapeutic Targets in Kawasaki Disease. BioMed Research International, 2017, Article ID: 8257862.
https://doi.org/10.1155/2017/8257862 |
[33] | Rife, E. and Gedalia, A. (2020) Kawasaki Disease: An Update. Current Rheumatology Reports, 22, Article No. 75.
https://doi.org/10.1007/s11926-020-00941-4 |
[34] | Onouchi, Y., Tamari, M., Takahashi, A., et al. (2006) A Genomewide Linkage Analysis of Kawasaki Disease: Evidence for Linkage to Chromosome 12. Journal of Human Genetics, 52, 179-190.
https://doi.org/10.1007/s10038-006-0092-3 |
[35] | Rajasekaran, K., Duraiyarasan, S., Adefuye, M., et al. (2022) Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus, 14, e28358. https://doi.org/10.7759/cureus.28358 |
[36] | Kumrah, R., Vignesh, P., Rawat, A., et al. (2020) Immunogenetics of Kawasaki Disease. Clinical Reviews in Allergy & Immunology, 59, 122-139. https://doi.org/10.1007/s12016-020-08783-9 |
[37] | Parthasarathy, P., Agarwal, A., Chawla, K., et al. (2015) Up-coming Biomarkers for the Diagnosis of Kawasaki Disease: A Review. Clinical Biochemistry, 48, 1188-1194. https://doi.org/10.1016/j.clinbiochem.2015.02.013 |
[38] | Onouchi, Y., Ozaki, K., Buns, J.C., et al. (2010) Common Variants in CASP3 Confer Susceptibility to Kawasaki Disease. Human Molecular Genetics, 19, 2898-2906. https://doi.org/10.1093/hmg/ddq176 |
[39] | Yoon, K.L. (2015) Update of Genetic Susceptibility in Patients with Kawasaki Disease. Korean Journal of Pediatrics, 58, 84-88. https://doi.org/10.3345/kjp.2015.58.3.84 |
[40] | Wang, W., Lou, J., Zhong, R., et al. (2014) The Roles of Ca2+/NFAT Signaling Genes in Kawasaki Disease: Single- and Mul-tiple-Risk Genetic Variants. Scientific Reports, 4, Article No. 5208. https://doi.org/10.1038/srep05208 |
[41] | Onouchi, Y., Suzuki, Y., Suzuki, H., et al. (2011) ITPKC and CASP3 Polymorphisms and Risks for IVIG Unresponsiveness and Coronary Artery Lesion Formation in Kawasaki Disease. The Pharmacogenomics Journal, 13, 52-59.
https://doi.org/10.1038/tpj.2011.45 |
[42] | Kuo, H.-C., Yu, H.-R., Juo, S.-H., et al. (2010) CASP3 Gene Sin-gle-Nucleotide Polymorphism (rs72689236) and Kawasaki Disease in Taiwanese Children. Journal of Human Genetics, 56, 161-165.
https://doi.org/10.1038/jhg.2010.154 |
[43] | Onouchi, Y., Ozaki, K., Burns, J.C., et al. (2012) A Genome-Wide Association Study Identifies Three New Risk Loci for Kawasaki Disease. Nature Genetics, 44, 517-521. https://doi.org/10.1038/ng.2220 |
[44] | Lee, Y.-C., Kuo, H.-C., Chang, J.-S., et al. (2012) Two New Susceptibility Loci for Kawasaki Disease Identified through Genome-Wide Association Analysis. Nature Genetics, 44, 522-525. https://doi.org/10.1038/ng.2227 |
[45] | Kim, K.Y. and Kim, D.S. (2016) Recent Advances in Kawasaki Disease. Yonsei Medical Journal, 57, 15-21.
https://doi.org/10.3349/ymj.2016.57.1.15 |
[46] | Khor, C.C., Davila, S., Breunis, W.B., et al. (2011) Genome-Wide Association Study Identifies FCGR2A as a Susceptibility Locus for Kawasaki Disease. Nature Genetics, 43, 1241-1246. https://doi.org/10.1038/ng.981 |
[47] | Xu, S.-Z., Onouchi, Y., Fukazawa, R., et al. (2016) Variations in ORAI1 Gene Associated with Kawasaki Disease. PLOS ONE, 11, e0145486. https://doi.org/10.1371/journal.pone.0145486 |
[48] | Che, D., Pi, L., Fang, Z., et al. (2018) ABCC4 Variants Modify Susceptibility to Kawasaki Disease in a Southern Chinese Population. Disease Markers, 2018, Article ID: 8638096. https://doi.org/10.1155/2018/8638096 |
[49] | Shimizu, C., Oharaseki, T., Takahashi, K., et al. (2013) The Role of TGF-β and Myofibroblasts in the Arteritis of Kawasaki Disease. Human Pathology, 44, 189-198. https://doi.org/10.1016/j.humpath.2012.05.004 |
[50] | Ban, J.Y., Kim, S.K., Kang, S.W., et al. (2010) Association between Polymorphisms of Matrix Metalloproteinase 11 (MMP-11) and Kawasaki Disease in the Korean Population. Life Sciences, 86, 756-759.
https://doi.org/10.1016/j.lfs.2010.03.012 |
[51] | Kuo, H.-C., Chao, M.-C., Hsu, Y.-W., et al. (2012) CD40Gene Polymorphisms Associated with Susceptibility and Coronary Artery Lesions of Kawasaki Disease in the Taiwanese Population. The Scientific World Journal, 2012, Article ID: 520865. https://doi.org/10.1100/2012/520865 |