全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

褐藻寡糖与肠道菌群在肥胖中的研究进展
Research Progress on Alginate Oligosaccharide and Gut Microbiota in Obesity

DOI: 10.12677/HJFNS.2024.131018, PP. 143-154

Keywords: 褐藻寡糖,肠道菌群,色氨酸代谢,肥胖
Alginate Oligosaccharides
, Gut Microbiota, Tryptophan Metabolic, Obesity

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,肥胖已成为严重的全球性公共卫生问题。肠道菌群被认为是调节宿主健康的主要因素,更被认为是参与维持能量稳态和预防治疗肥胖的关键因素。在这里,我们将报告肥胖的流行现状和影响因素、肠道菌群的组成和疾病的联系、肠道菌群代谢产物与肥胖的联系以及益生元褐藻寡糖与肥胖的联系。益生元能够被肠道菌群所利用,增加有益菌减少有害菌改善肥胖及其相关代谢紊乱。但尚未有研究表明益生元褐藻寡糖是否能够调控色氨酸代谢通路改善肥胖相关代谢综合征,这为其提供了研究思路。我们希望这能为褐藻寡糖开发利用提供理论基础和灵感。
In recent years, obesity has become a serious global public health problem. Gut microbiota is considered to be a major factor in regulating host health, and is also considered to be a key factor involved in main-taining energy homeostasis and preventing and treating obesity. Here, we report the prevalence status and influencing factors of obesity, the composition of gut microbiota and the association of disease, the relationship between the gut microbiome-derived metabolites and obesity, and the association of prebiotics, such as alginate oligosaccharide, with obesity. Prebiotics can be utilized by gut microbiota, increasing beneficial bacteria and reducing harmful bacteria to improve obesity and related metabolic disorders. However, no studies have shown whether alginate oligosaccharide can regulate tryptophan metabolic pathway to improve obesity-related metabolic syndrome, which provides research ideas. And we hope that this review will provide theoretical basis and inspiration for the development and utilization of algin oligosaccharides.

References

[1]  Westbury, S., Oyebode, O., Van Rens, T., et al. (2023) Obesity Stigma: Causes, Consequences, and Potential Solutions. Current Obesity Reports, 12, 10-23.
https://doi.org/10.1007/s13679-023-00495-3
[2]  Collaboration, N.C.D.R.F. (2016) Trends in Adult Body-Mass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Popula-tion-Based Measurement Studies with 19.2 Million Participants. The Lancet, 387, 1377-1396.
https://doi.org/10.1016/S0140-6736(16)30054-X
[3]  Chen, K., Shen, Z., Gu, W., et al. (2023) Prevalence of Obesity and Associated Complications in China: A Cross-Sectional, Real-World Study in 15.8 Million Adults. Diabetes, Obesity and Metabolism, 25, 3390-3399.
https://doi.org/10.1111/dom.15238
[4]  World Obesity Federation. World Obesity Atlas 2023.
https://data.worldobesity.org/publications/?cat=19
[5]  Hill, J.O. (2006) Understanding and Addressing the Epi-demic of Obesity: An Energy Balance Perspective. Endocrine Reviews, 27, 750-761.
https://doi.org/10.1210/er.2006-0032
[6]  Swinburn, B.A., Sacks, G., Hall, K.D., et al. (2011) The Global Obesity Pandemic: Shaped by Global Drivers and Local Environments. The Lancet, 378, 804-814.
https://doi.org/10.1016/S0140-6736(11)60813-1
[7]  Despres, J.P. and Lemieux, I. (2006) Abdominal Obesity and Metabolic Syndrome. Nature, 444, 881-887.
https://doi.org/10.1038/nature05488
[8]  Xu, Z., Jiang, W., Huang, W., et al. (2022) Gut Microbiota in Patients with Obesity and Metabolic Disorders—A Systematic Review. Genes & Nutrition, 17, Article No. 2.
https://doi.org/10.1186/s12263-021-00703-6
[9]  Jia, X., Chen, Q., Wu, H., et al. (2023) Exploring a Novel Ther-apeutic Strategy: The Interplay between Gut Microbiota and High-Fat Diet in the Pathogenesis of Metabolic Disorders. Frontiers in Nutrition, 10, Article 1291853.
https://doi.org/10.3389/fnut.2023.1291853
[10]  Ley, R.E., Turnbaugh, P.J., Klein, S., et al. (2006) Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature, 444, 1022-1023.
https://doi.org/10.1038/4441022a
[11]  Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al. (2006) An Obesi-ty-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.
https://doi.org/10.1038/nature05414
[12]  Ibrahim, K.S., Bourwis, N., Dolan, S., et al. (2021) Characterisation of Gut Microbiota of Obesity and Type 2 Diabetes in a Rodent Model. Bioscience of Microbiota, Food and Health, 40, 65-74.
https://doi.org/10.12938/bmfh.2019-031
[13]  Takeuchi, T., Kameyama, K., Miyauchi, E., et al. (2023) Fatty Acid Overproduction by Gut Commensal Microbiota Exacerbates Obesity. Cell Metabolism, 35, 361-375.e9.
https://doi.org/10.1016/j.cmet.2022.12.013
[14]  Cheng, Z., Zhang, L., Yang, L., et al. (2022) The Critical Role of Gut Microbiota in Obesity. Frontiers in Endocrinology (Lausanne), 13, Article 1025706.
https://doi.org/10.3389/fendo.2022.1025706
[15]  Oh, K.K., Gupta, H., Min, B.H., et al. (2022) Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells, 11, Article 2903.
https://doi.org/10.3390/cells11182903
[16]  Czajkowski, P., Adamska-Patruno, E., Bauer, W., et al. (2020) The Impact of FTO Genetic Variants on Obesity and Its Metabolic Consequences Is Dependent on Daily Macronutrient In-take. Nutrients, 12, Article 3255.
https://doi.org/10.3390/nu12113255
[17]  Dubern, B., Mosbah, H., Pigeyre, M., et al. (2022) Rare Genetic Causes of Obesity: Diagnosis and Management in Clinical Care. Annales d’Endocrinologie (Paris), 83, 63-72.
https://doi.org/10.1016/j.ando.2021.12.003
[18]  Wu, Y., Duan, H., Tian, X., et al. (2018) Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis. Frontiers in Genetics, 9, Article 179.
https://doi.org/10.3389/fgene.2018.00179
[19]  Huvenne, H., Dubern, B., Clement, K., et al. (2016) Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obesity Facts, 9, 158-173.
https://doi.org/10.1159/000445061
[20]  Heikkinen, A., Bollepalli, S. and Ollikainen, M. (2022) The Potential of DNA Methylation as a Biomarker for Obesity and Smoking. Journal of Internal Medicine, 292, 390-408.
https://doi.org/10.1111/joim.13496
[21]  Chu, D.T., Thi, Y.N. and Chew, N.W.S. (2023) Histone Modifications in Fat Metabolism and Obesity. Progress in Molecular Biology and Translational Science, 197, 135-152.
https://doi.org/10.1016/bs.pmbts.2023.01.003
[22]  Zhang, J.Y., Ren, C.Q., Cao, Y.N., et al. (2023) Role of Mi-croRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. Journal of Agricultural and Food Chemis-try, 71, 14396-14412.
https://doi.org/10.1021/acs.jafc.3c03042
[23]  Arena, R., Pronk, N.P. and Woodard, C. (2023) Physical Inactivity and Obesity in the United States: At the Intersection of Politics, Socioeconomics, Race, and Culture. Current Problems in Cardiology, 48, Article 102007.
https://doi.org/10.1016/j.cpcardiol.2023.102007
[24]  Ludwig, D.S. and Ebbeling, C.B. (2018) The Carbohy-drate-Insulin Model of Obesity: Beyond “Calories in, Calories out”. JAMA Internal Medicine, 178, 1098-1103.
https://doi.org/10.1001/jamainternmed.2018.2933
[25]  Swinburn, B., Sacks, G. and Ravussin, E. (2009) Increased Food Energy Supply Is More than Sufficient to Explain the US Epidemic of Obesity. The American Journal of Clinical Nutrition, 90, 1453-1456.
https://doi.org/10.3945/ajcn.2009.28595
[26]  Poli, V.F.S., Sanches, R.B., Moraes, A.D.S., et al. (2017) The Ex-cessive Caloric Intake and Micronutrient Deficiencies Related to Obesity after a Long-Term Interdisciplinary Therapy. Nutrition, 38, 113-119.
https://doi.org/10.1016/j.nut.2017.01.012
[27]  Kline, C.E. (2014) The Bidirectional Relationship between Exercise and Sleep: Implications for Exercise Adherence and Sleep Improvement. American Journal of Lifestyle Medicine, 8, 375-379.
https://doi.org/10.1177/1559827614544437
[28]  Young, A.I., Wauthier, F. and Donnelly, P. (2016) Multiple Nov-el Gene-by-Environment Interactions Modify the Effect of FTO Variants on Body Mass Index. Nature Communications, 7, Article No. 12724.
https://doi.org/10.1038/ncomms12724
[29]  Dayabandara, M., Hanwella, R., Ratnatunga, S., et al. (2017) Antipsy-chotic-Associated Weight Gain: Management Strategies and Impact on Treatment Adherence. Neuropsychiatric Disease and Treatment, 13, 2231-2241.
https://doi.org/10.2147/NDT.S113099
[30]  Gammone, M.A., Efthymakis, K. and D’Orazio, N. (2021) Effect of Third-Generation Beta Blockers on Weight Loss in a Population of Overweight-Obese Subjects in a Controlled Dietary Regimen. Journal of Nutrition and Metabolism, 2021, Article ID: 5767306.
https://doi.org/10.1155/2021/5767306
[31]  Amato, A.A., Wheeler, H.B. and Blumberg, B. (2021) Obesity and Endocrine-Disrupting Chemicals. Endocrine Connections, 10, R87-R105.
https://doi.org/10.1530/EC-20-0578
[32]  Nappi, F., Barrea, L., Di Somma, C., et al. (2016) Endocrine Aspects of Environmental “Obesogen” Pollutants. International Journal of Environmental Research and Public Health, 13, Article 765.
https://doi.org/10.3390/ijerph13080765
[33]  Geng, J., Ni, Q., Sun, W., et al. (2022) The Links between Gut Mi-crobiota and Obesity and Obesity Related Diseases. Biomedicine & Pharmacotherapy, 147, Article 112678.
https://doi.org/10.1016/j.biopha.2022.112678
[34]  Mocanu, V., Zhang, Z., Deehan, E.C., et al. (2021) Fecal Mi-crobial Transplantation and Fiber Supplementation in Patients with Severe Obesity and Metabolic Syndrome: A Ran-domized Double-Blind, Placebo-Controlled Phase 2 Trial. Nature Medicine, 27, 1272-1279.
https://doi.org/10.1038/s41591-021-01399-2
[35]  Sun, L., Ma, L., Ma, Y., et al. (2018) Insights into the Role of Gut Microbiota in Obesity: Pathogenesis, Mechanisms, and Therapeutic Perspectives. Protein & Cell, 9, 397-403.
https://doi.org/10.1007/s13238-018-0546-3
[36]  Milani, C., Duranti, S., Bottacini, F., et al. (2017) The First Mi-crobial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 81.
https://doi.org/10.1128/MMBR.00036-17
[37]  Shi, X., Ma, T., Sakandar, H.A., et al. (2022) Gut Microbiome and Aging Nexus and Underlying Mechanism. Applied Microbiology and Biotechnology, 106, 5349-5358.
https://doi.org/10.1007/s00253-022-12089-5
[38]  Martel, J., Chang, S.H., Ko, Y.F., et al. (2022) Gut Barrier Disruption and Chronic Disease. Trends in Endocrinology & Metabolism, 33, 247-265.
https://doi.org/10.1016/j.tem.2022.01.002
[39]  Gomes, A.C., Hoffmann, C. and Mota, J.F. (2018) The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes, 9, 308-325.
https://doi.org/10.1080/19490976.2018.1465157
[40]  De Vos, W.M., Tilg, H., Van Hul, M., et al. (2022) Gut Mi-crobiome and Health: Mechanistic Insights. Gut, 71, 1020-1032.
https://doi.org/10.1136/gutjnl-2021-326789
[41]  Rodriguez, C., Romero, E., Garrido-Sanchez, L., et al. (2020) Microbiota Insights in Clostridium Difficile Infection and Inflammatory Bowel Disease. Gut Microbes, 12, Article 1725220.
https://doi.org/10.1080/19490976.2020.1725220
[42]  Li, Q., Wang, C., Tang, C., et al. (2014) Dysbiosis of Gut Fungal Microbiota Is Associated with Mucosal Inflammation in Crohn’s Disease. Journal of Clinical Gastroenterology, 48, 513-523.
https://doi.org/10.1097/MCG.0000000000000035
[43]  Mars, R.A.T., Yang, Y., Ward, T., et al. (2020) Longitudi-nal Multi-Omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell, 182, 1460-1473.e17.
https://doi.org/10.1016/j.cell.2020.08.007
[44]  Lin, Y., Lau, H.C., Liu, Y., et al. (2022) Altered Mycobiota Signa-tures and Enriched Pathogenic Aspergillus rambellii Are Associated with Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology, 163, 908-921.
https://doi.org/10.1053/j.gastro.2022.06.038
[45]  Leonard, M.M., Valitutti, F., Karathia, H., et al. (2021) Micro-biome Signatures of Progression toward Celiac Disease Onset in At-Risk Children in a Longitudinal Prospective Cohort Study. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020322118.
https://doi.org/10.1073/pnas.2020322118
[46]  Vallianou, N., Stratigou, T., Christodoulatos, G.S., et al. (2019) Understanding the Role of the Gut Microbiome and Microbial Metabolites in Obesity and Obesity-Associated Metabolic Disorders: Current Evidence and Perspectives. Current Obesity Reports, 8, 317-332.
https://doi.org/10.1007/s13679-019-00352-2
[47]  Liu, R., Hong, J., Xu, X., et al. (2017) Gut Microbiome and Se-rum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868.
https://doi.org/10.1038/nm.4358
[48]  Thingholm, L.B., Ruhlemann, M.C., Koch, M., et al. (2019) Obese Individu-als with and Without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host & Microbe, 26, 252-264.e10.
https://doi.org/10.1016/j.chom.2019.07.004
[49]  Li, Q., Chang, Y., Zhang, K., et al. (2020) Implication of the Gut Microbiome Composition of Type 2 Diabetic Patients from Northern China. Scientific Re-ports, 10, Article No. 5450.
https://doi.org/10.1038/s41598-020-62224-3
[50]  Da Silva, H.E., Teterina, A., Comelli, E.M., et al. (2018) Nonalcoholic Fatty Liver Disease Is Associated with Dysbiosis Independent of Body Mass Index and Insulin Resistance. Scientific Reports, 8, Article No. 1466.
https://doi.org/10.1038/s41598-018-19753-9
[51]  Murphy, K., O’Donovan, A.N., Caplice, N.M., et al. (2021) Ex-ploring the Gut Microbiota and Cardiovascular Disease. Metabolites, 11, Article 493.
https://doi.org/10.3390/metabo11080493
[52]  Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14.
https://doi.org/10.1186/s40168-016-0222-x
[53]  Jie, Z., Xia, H., Zhong, S.L., et al. (2017) The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nature Communications, 8, Article No. 845.
https://doi.org/10.1038/s41467-017-00900-1
[54]  Hirayama, M. and Ohno, K. (2021) Parkinson’s Disease and Gut Microbiota. Annals of Nutrition and Metabolism, 77, 28-35.
https://doi.org/10.1159/000518147
[55]  Zhuang, Z.Q., Shen, L.L., Li, W.W., et al. (2018) Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. Journal of Alz-heimer’s Disease, 63, 1337-1346.
https://doi.org/10.3233/JAD-180176
[56]  Liu, F., Li, J., Wu, F., et al. (2019) Altered Composition and Function of Intestinal Microbiota in Autism Spectrum Disorders: A Systematic Review. Translational Psychiatry, 9, Article No. 43.
https://doi.org/10.1038/s41398-019-0389-6
[57]  Fang, X., Wang, X., Yang, S., et al. (2016) Evaluation of the Mi-crobial Diversity in Amyotrophic Lateral Sclerosis Using High-Throughput Sequencing. Frontiers in Microbiology, 7, Article 1479.
https://doi.org/10.3389/fmicb.2016.01479
[58]  Valles-Colomer, M., Falony, G., Darzi, Y., et al. (2019) The Neu-roactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nature Microbiology, 4, 623-632.
https://doi.org/10.1038/s41564-018-0337-x
[59]  Riquelme, E., Zhang, Y., Zhang, L., et al. (2019) Tumor Micro-biome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178, 795-806.e12.
https://doi.org/10.1016/j.cell.2019.07.008
[60]  Mahmud, M.R., Akter, S., Tamanna, S.K., et al. (2022) Impact of Gut Microbiome on Skin Health: Gut-Skin Axis Observed through the Lenses of Therapeutics and Skin Diseases. Gut Microbes, 14, Article 2096995.
https://doi.org/10.1080/19490976.2022.2096995
[61]  Blaak, E.E., Canfora, E.E., Theis, S., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455.
https://doi.org/10.3920/BM2020.0057
[62]  Kimura, I., Ozawa, K., Inoue, D., et al. (2013) The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43. Nature Communications, 4, Article No. 1829.
https://doi.org/10.1038/ncomms2852
[63]  Tan, J., Mckenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119.
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
[64]  Perry, R.J., Peng, L., Barry, N.A., et al. (2016) Acetate Mediates a Microbiome-Brain-Beta-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217.
https://doi.org/10.1038/nature18309
[65]  Coppola, S., Avagliano, C., Calignano, A. and Canani, R.B. (2021) The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules, 26, 682.
https://doi.org/10.3390/molecules26030682
[66]  Chambers, E.S., Viardot, A., Psichas, A., et al. (2015) Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut, 64, 1744-1754.
https://doi.org/10.1136/gutjnl-2014-307913
[67]  Boets, E., Gomand, S.V., Deroover, L., et al. (2017) Systemic Availability and Metabolism of Colonic-Derived Short-Chain Fatty Acids in Healthy Subjects: A Stable Isotope Study. The Journal of Physiology, 595, 541-555.
https://doi.org/10.1113/JP272613
[68]  Mcglone, E.R. and Bloom, S.R. (2019) Bile Acids and the Metabolic Syn-drome. Annals of Clinical Biochemistry, 56, 326-337.
https://doi.org/10.1177/0004563218817798
[69]  Collins, S.L., Stine, J.G., Bisanz, J.E., et al. (2023) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247.
https://doi.org/10.1038/s41579-022-00805-x
[70]  Shapiro, H., Kolodziejczyk, A.A., Halstuch, D., et al. (2018) Bile Acids in Glucose Metabolism in Health and Disease. Journal of Experimental Medicine, 215, 383-396.
https://doi.org/10.1084/jem.20171965
[71]  Wei, M., Huang, F., Zhao, L., et al. (2020) A Dysregulated Bile Acid-Gut Microbiota Axis Contributes to Obesity Susceptibility. EBioMedicine, 55, Arti-cle 102766.
https://doi.org/10.1016/j.ebiom.2020.102766
[72]  Xie, A.J., Mai, C.T., Zhu, Y.Z., et al. (2021) Bile Acids as Regulatory Molecules and Potential Targets in Metabolic Diseases. Life Sciences, 287, Article 120152.
https://doi.org/10.1016/j.lfs.2021.120152
[73]  Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regu-lation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724.
https://doi.org/10.1016/j.chom.2018.05.003
[74]  Gao, J., Xu, K., Liu, H., et al. (2018) Impact of the Gut Microbi-ota on Intestinal Immunity Mediated by Tryptophan Metabolism. Frontiers in Cellular and Infection Microbiology, 8, Article 13.
https://doi.org/10.3389/fcimb.2018.00013
[75]  O’Mahony, S.M., Clarke, G., Borre, Y.E., et al. (2015) Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behavioural Brain Research, 277, 32-48.
https://doi.org/10.1016/j.bbr.2014.07.027
[76]  Mallmann, N.H., Lima, E.S. and Lalwani, P. (2018) Dysregulation of Tryptophan Catabolism in Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 16, 135-142.
https://doi.org/10.1089/met.2017.0097
[77]  Natividad, J.M., Agus, A., Planchais, J., et al. (2018) Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabo-lism, 28, 737-749.e4.
https://doi.org/10.1016/j.cmet.2018.07.001
[78]  Laurans, L., Venteclef, N., Haddad, Y., et al. (2018) Genetic Defi-ciency of Indoleamine 2,3-Dioxygenase Promotes Gut Microbiota-Mediated Metabolic Health. Nature Medicine, 24, 1113-1120.
https://doi.org/10.1038/s41591-018-0060-4
[79]  Sumara, G., Sumara, O., Kim, J.K., et al. (2012) Gut-Derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation. Cell Metabolism, 16, 588-600.
https://doi.org/10.1016/j.cmet.2012.09.014
[80]  Van Galen, K.A., ter Horst, K.W. and Serlie, M.J. (2021) Seroto-nin, Food Intake, and Obesity. Obesity Reviews, 22, e13210.
https://doi.org/10.1111/obr.13210
[81]  Roager, H.M. and Licht, T.R. (2018) Microbial Tryptophan Catabolites in Health and Disease. Nature Communications, 9, Article No. 3294.
https://doi.org/10.1038/s41467-018-05470-4
[82]  Waclawikova, B., Codutti, A., Alim, K., et al. (2022) Gut Microbiota-Motility Interregulation: Insights from in Vivo, ex Vivo and in Silico Studies. Gut Microbes, 14, Article 1997296.
https://doi.org/10.1080/19490976.2021.1997296
[83]  Zhai, L., Xiao, H., Lin, C., et al. (2023) Gut Mi-crobiota-Derived Tryptamine and Phenethylamine Impair Insulin Sensitivity in Metabolic Syndrome and Irritable Bowel Syndrome. Nature Communications, 14, Article No. 4986.
https://doi.org/10.1038/s41467-023-40552-y
[84]  Ji, Y., Gao, Y., Chen, H., et al. (2019) Indole-3-Acetic Acid Al-leviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflamma-tory Stress. Nutrients, 11, Article 2062.
https://doi.org/10.3390/nu11092062
[85]  Zgarbova, E. and Vrzal, R. (2023) Skatole: A Thin Red Line between Its Benefits and Toxicity. Biochimie, 208, 1-12.
https://doi.org/10.1016/j.biochi.2022.12.014
[86]  D’Onofrio, F., Renga, G., Puccetti, M., et al. (2021) In-dole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangi-tis. Cells, 10, Article 1622.
https://doi.org/10.3390/cells10071622
[87]  Su, X., Zhang, M., Qi, H., et al. (2022) Gut Microbiota-Derived Me-tabolite 3-Idoleacetic Acid Together with LPS Induces IL-35+ B Cell Generation. Microbiome, 10, Article No. 13.
https://doi.org/10.1186/s40168-021-01205-8
[88]  Ehrlich, A.M., Pacheco, A.R., Henrick, B.M., et al. (2020) In-dole-3-Lactic Acid Associated with Bifidobacterium-Dominated Microbiota Significantly Decreases Inflammation in In-testinal Epithelial Cells. BMC Microbiology, 20, Article No. 357.
https://doi.org/10.1186/s12866-020-02023-y
[89]  Zhang, Q., Zhao, Q., Li, T., et al. (2023) Lactobacillus planta-rum-Derived Indole-3-Lactic Acid Ameliorates Colorectal Tumorigenesis via Epigenetic Regulation of CD8+ T Cell Im-munity. Cell Metabolism, 35, 943-960.e9.
https://doi.org/10.1016/j.cmet.2023.04.015
[90]  Cussotto, S., Delgado, I., Anesi, A., et al. (2020) Tryptophan Metabolic Pathways Are Altered in Obesity and Are Associated with Systemic Inflammation. Frontiers in Immunology, 11, Article 557.
https://doi.org/10.3389/fimmu.2020.00557
[91]  Qi, Q., Li, J., Yu, B., et al. (2022) Host and Gut Microbial Tryp-tophan Metabolism and Type 2 Diabetes: An Integrative Analysis of Host Genetics, Diet, Gut Microbiome and Circulat-ing Metabolites in Cohort Studies. Gut, 71, 1095-1105.
https://doi.org/10.1136/gutjnl-2021-324053
[92]  Sehgal, R., Ilha, M., Vaittinen, M., et al. (2021) Indole-3-Propionic Acid, a Gut-Derived Tryptophan Metabolite, Associates with Hepatic Fibrosis. Nutrients, 13, Article 3509.
https://doi.org/10.3390/nu13103509
[93]  Farook, V.S., Reddivari, L., Chittoor, G., et al. (2015) Metabolites as Novel Biomarkers for Childhood Obesity-Related Traits in Mexican-American Children. Pediatric Obesity, 10, 320-327.
https://doi.org/10.1111/ijpo.270
[94]  Chen, L., Yang, Y., Sun, S., et al. (2022) Indolepropionic Acid Reduces Obesity-Induced Metabolic Dysfunction through Colonic Barrier Restoration Me-diated via Tuft Cell-Derived IL-25. The FEBS Journal, 289, 5985-6004.
https://doi.org/10.1111/febs.16470
[95]  Gibson, G.R., Hutkins, R., Sanders, M.E., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502.
https://doi.org/10.1038/nrgastro.2017.75
[96]  Sanders, M.E., Merenstein, D.J., Reid, G., et al. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: from Biology to the Clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605-616.
https://doi.org/10.1038/s41575-019-0173-3
[97]  Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92.
https://doi.org/10.3390/foods8030092
[98]  Wang, M., Chen, L. and Zhang, Z. (2021) Potential Applications of Al-ginate Oligosaccharides for Biomedicine—A Mini Review. Carbohydrate Polymers, 271, Article 118408.
https://doi.org/10.1016/j.carbpol.2021.118408
[99]  Xing, M., Cao, Q., Wang, Y., et al. (2020) Advances in Re-search on the Bioactivity of Alginate Oligosaccharides. Marine Drugs, 18, Article 144.
https://doi.org/10.3390/md18030144
[100]  Tran, V.C., Cho, S.Y., Kwon, J., et al. (2019) Alginate Oligosaccharide (AOS) Improves Immuno-Metabolic Systems by Inhibiting STOML2 Overexpression in High-Fat-Diet-Induced Obese Zebrafish. Food & Function, 10, 4636-4648.
https://doi.org/10.1039/C9FO00982E
[101]  Li, S., He, N. and Wang, L. (2019) Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Marine Drugs, 17, Article 540.
https://doi.org/10.3390/md17090540
[102]  Li, S., Wang, L., Liu, B., et al. (2020) Unsaturated Alginate Oligosac-charides Attenuated Obesity-Related Metabolic Abnormalities by Modulating Gut Microbiota in High-Fat-Diet Mice. Food & Function, 11, 4773-4784.
https://doi.org/10.1039/C9FO02857A

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133