|
人工智能技术用于小学数学错题整理的应用研究
|
Abstract:
本文聚焦小学数学错题整理,阐明了传统手抄整理错题之于小学生费时费力、压力大、难以坚持的弊端,并提出引入人工智能技术的必要性。为提高错题整理的效率、错题的最大化利用率,本文介绍了图像识别、知识图谱、AI个性化推荐三种技术,可分别代替传统错题整理的手抄、分类、相似题型寻找的步骤,强调人工智能技术能够很好地简化错题整理过程、服务于教育领域。接着,分析了其背后的两种先进算法及二者用于小学数学错题整理过程中的优势:CRNN + CTC算法能够准确地将错题图片转化为存储文本,基于深度强化学习的Top-N推荐模型实现了实时优化,随着小学生数学错题的变化,提供相应的类似题型。最后,建议未来进一步研究应关注多学科应用、技术优化、隐私与安全三方面。总而言之,本文为人工智能技术用于数学错题自动整理领域提供了新思路。
This paper focuses on the sorting of mathematical errors in primary school, explaining the disad-vantages of traditional manual sorting of errors in primary school students, which are time-consuming, laborious, stressful and difficult to stick to. The paper also points out the necessity of introducing artificial intelligence technology. In order to improve the efficiency of sorting out wrong questions and maximize the utilization rate of them, this paper introduces three technolo-gies: image recognition, knowledge graph and AI personalized recommendation, which can replace the steps of hand-copying, classification and finding similar questions in traditional sorting out wrong questions respectively, emphasizing that artificial intelligence technology can well simplify the sorting process of wrong questions and serve the field of education. Then, the paper analyzes the two advanced algorithms behind it and their advantages in the sorting process of primary school math errors: CRNN + CTC algorithm can accurately transform pictures into stored text. Top-N recommendation model based on deep reinforcement learning realizes real-time optimization, and provides corresponding similar question types with the change of primary school math errors. Fi-nally, it is suggested that future research should focus on three aspects: multi-disciplinary applica-tion, technology optimization, privacy and security. All in all, this paper provides a new idea for the application of artificial intelligence technology in the field of automatic sorting of mathematical errors.
[1] | 张创平. 论小学数学错题资源的开发与应用[J]. 数学学习与研究, 2023(19): 158-160. |
[2] | 刘晓明. 人工智能科普与初中物理教学的融合[J]. 教师教育论坛, 2021, 34(4): 96. |
[3] | 施祖红. 论小学数学错题集的整理与利用策略[J]. 启迪与智慧(上), 2023(11): 65-67. |
[4] | 石玉军. 浅议小学数学错题本的使用策略[J]. 教育界, 2023(13): 88-90. |
[5] | 孔亚. 思维导图在小学数学错题分析中的应用[J]. 新课程, 2022(26): 118-119. |
[6] | 沈强. 活页式错题本: 小学六年级数学错题整理的实践研究[J]. 新课程, 2023(1): 130-132. |
[7] | 刘珊珊. 利用信息技术促进初中数学错题教学的思考[J]. 中国新通信, 2021, 23(1): 214-215. |
[8] | 朱哲, 王敏霞. 人工智能时代的数学教育[J]. 中小学课堂教学研究, 2023(6): 1-6. |
[9] | 刘晓勇. 高一数学易错题库软件开发及错题管理研究[D]: [硕士学位论文]. 贵阳: 贵州师范大学, 2023. |
[10] | 邓雨培. “人工智能 + 教育”视域下小学数学错题资源的利用研究[D]: [硕士学位论文]. 湘潭: 湖南科技大学, 2022. |
[11] | 万林, 鲍雯. 基于知识图谱的习题资源构建[J]. 中国信息技术教育, 2023(21): 84-89. |
[12] | 傅翠娇, 龚震, 杨子恒. 基于DeepFM的个性化练习题目推荐系统研究[J]. 实验技术与管理, 2023, 40(3): 212-216+225. https://doi.org/10.16791/j.cnki.sjg.2023.03.035 |
[13] | 刘宏阳. 基于深度强化学习的Top-N推荐模型研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
https://doi.org/10.27440/d.cnki.gysdu.2022.001696 |
[14] | 王雨辰. 基于深度强化学习的学习资源推荐算法研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2023.
https://doi.org/10.27280/d.cnki.gsdsu.2022.001064 |