全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Investigation of the Stability of the Performance Characteristics of a Photovoltaic Module in the Face of Environmental and Meteorological Factors

DOI: 10.4236/ojapps.2024.142042, PP. 589-608

Keywords: Renewables Energies Instruments, Internal Parameters of Photovoltaic Panel, Monocrystalline Photovoltaic Panel, Solar Energy Production, Energy Intermittence

Full-Text   Cite this paper   Add to My Lib

Abstract:

The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m2) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m2 but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations.

References

[1]  Mathieu, A. (2012) Contribution à la conception et à l’optimisation thermodynamique d’une microcentrale solaire thermoélectrique. Thèse de Doctorat (Sciences), Université de Lorraine, Lorraine.
[2]  Howland, M.F., et al. (2022) Collective Wind Farm Operation Based on a Predictive Model Increases Utility-Scale Energy Production. Nature Energy, 7, 818-827.
https://doi.org/10.1038/s41560-022-01085-8
[3]  Armaroli, N. and Balzani, V. (2016) Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chemistry—A European Journal, 22, 32-57.
https://doi.org/10.1002/chem.201503580
[4]  Sivaram, V. (2018) Taming the Sun: Innovations to Harness Solar Energy and Power the Planet. MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/11432.001.0001
[5]  Seibert, M.K. and Rees, W.E. (2021) Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies, 14, Article No. 4508.
https://doi.org/10.3390/en14154508
[6]  Unuofin, J.O., Iwarere, S.A. and Daramola, M.O. (2023) Embracing the Future of Circular Bio-Enabled Economy: Unveiling the Prospects of Microbial Fuel Cells in Achieving True Sustainable Energy. Environmental Science and Pollution Research, 30, 90547-90573.
https://doi.org/10.1007/s11356-023-28717-0
[7]  Shah, H.H., Bareschino, P., Mancusi, E. and Pepe, F. (2023) Environmental Life Cycle Analysis and Energy Payback Period Evaluation of Solar PV Systems: The Case of Pakistan. Energies, 16, Article No. 6400.
https://doi.org/10.3390/en16176400
[8]  Seri, M., Mercuri, F., Ruani, G., Feng, Y., Li, M., Xu, Z.X. and Muccini, M. (2021) Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 9, Article ID: 2000901.
https://doi.org/10.1002/ente.202000901
[9]  Kassmi, K., Hamdoui, M. and Olivié, F. (2007) Conception et modélisation d’un système photovoltaïque adapté par une commande mppt analogique. Revue Des Energies Renouvelables, 10, 451-462.
https://doi.org/10.54966/jreen.v10i4.749
[10]  Yan, J. and Saunders, B.R. (2014) Third-Generation Solar Cells: A Review and Comparison of Polymer: Fullerene, Hybrid Polymer and Perovskite Solar Cells. RSC Advances, 4, 43286-43314.
https://doi.org/10.1039/C4RA07064J
[11]  Müller-Buschbaum, P., Thelakkat, M., Fässler, T.F. and Stutzmann, M. (2017) Hybrid Photovoltaics—From Fundamentals towards Application. Advanced Energy Materials, 7, Article ID: 1700248.
https://doi.org/10.1002/aenm.201700248
[12]  Venkateswararao, A. and Wong, K.T. (2021) Small Molecules for Vacuum-Processed Organic Photovoltaics: Past, Current Status, and Prospect. Bulletin of the Chemical Society of Japan, 94, 812-838.
https://doi.org/10.1246/bcsj.20200330
[13]  Luo, W., et al. (2017) Potential-Induced Degradation in Photovoltaic Modules: A Critical Review. Energy & Environmental Science, 10, 43-68.
https://doi.org/10.1039/C6EE02271E
[14]  Karduri, R.K.R. and Ananth, C. (2023) Advancements in Photovoltaic Materials for Sustainable Energy Generation. International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST).
https://doi.org/10.2139/ssrn.4637813
[15]  Fassinou, W.F. (1997) Réfrigérateur solaire photovoltaïque à trois compartiments avec batterie de froid: Etude, réalisation et analyse des irréversibilités. Thèse de Doctorat 3eme Cycle en Sciences, Université Nationale de Côte D’ivoire, Abidjan.
[16]  Brou, T. (2010) Etude technico-économique des technologies solaires en Côte D’ivoire. Mémoire de Master, Institut International D’ingénierie de L’eau et de L’environnement (2ie), Burkina Faso.
[17]  Kouassi, A.P.A., Touré, S. and Traoré, D. (2020) Seasonal Variability of the Solar Energy Potential of the City of Abidjan: Experimental Comparative Study of Two Sunshine Measurement Techniques. Journal of Solar Energy Engineering, 14, Article ID: 011013.
https://doi.org/10.1115/1.4044566
[18]  Markvart, T. and Castaner, L. (2003) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, Amsterdam, 998.
[19]  Khezzar, R., Zereg, M. and Khezzar, A. (2010) Comparaison entre les différents modèles électriques et détermination des paramètres de la caractéristique i-v d’un module photovoltaïque. Revue des Energies Renouvelables, 13, 379.
https://doi.org/10.54966/jreen.v13i3.206
[20]  Ricaud, A. (2013) Les politiques publiques de l’énergie solaire. Annales Historiques de L’electricité, Editions Victoires, 1, 111-131.
https://doi.org/10.3917/ahe.011.0111
[21]  Bashahu, M. and Habyarimana, A. (1995) Review and Test of Method for Determination of the Solar Cell Series Resistance. Renewable Energy, 6, 129-138.
https://doi.org/10.1016/0960-1481(94)E0021-V
[22]  Priyanka, S., Lal, M. and Singh, S.N. (2007) A New Method of Determination of Series and Shunt Resistances of Silicon. Solar Energy Materials and Solar Cells, 91, 137-142.
https://doi.org/10.1016/j.solmat.2006.07.008
[23]  Bouazidi, K., Chegaard, M. and Bouhemadou, A. (2007) Solar Cells Parameters Evaluation Considering the Series and Shunt Resistance. Solar Energy Materials and Solar Cells, 18, 1647-1651.
https://doi.org/10.1016/j.solmat.2007.05.019
[24]  Khezzar, R., Zereg, M. and Khezzar, A. (2010) Comparaison entre les différents modèles électriques et détermination des paramètres de la caractéristique i-v d’un module photovoltaïque. Revue des Energies Renouvelables, 13, 379-388.
https://doi.org/10.54966/jreen.v13i3.206
[25]  Agarwal, S.K., Muralidharan, R., Jain, S.C., Agarwala, A. and Tewary, V.K. (1981) A New Method for Measurement of Series Resistance of Solar Cell. Journal of Physics D: Applied Physics, 14, 1643-1646.
https://doi.org/10.1088/0022-3727/14/9/011
[26]  Wang, J.C., et al. (2011) A Novel Method for the Determination of Dynamic Resistance for Photovoltaic. Energy, 36, 5968-5974.
https://doi.org/10.1016/j.energy.2011.08.019
[27]  Brigand, S. (2008) Les principes de l’énergie solaire photovoltaïque. Techniques De Construction, Editions Le Moniteur, Paris, 17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133