全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2024 

The Erd?s-Faber-Lovász Conjecture for Gap-Restricted Hypergraphs

DOI: 10.4236/eng.2024.162006, PP. 47-59

Keywords: Linear Hypergraph, Chromatic Index, Erd?s-Faber-Lovász Conjecture, Edge Cardinality

Full-Text   Cite this paper   Add to My Lib

Abstract:

An edge coloring of hypergraph H is a function?\"\" such that?\"\"holds for any pair of intersecting edges \"\". The minimum number of colors in edge colorings of H is called the chromatic index of H and is denoted by \"\". Erdös, Faber and Lovász proposed a famous conjecture that?\"\"holds for any loopless linear hypergraph H with n vertices. In this paper, we show that?\"\"is true for gap-restricted hypergraphs. Our result extends a result of Alesandroni in 2021.

References

[1]  Erdos, P. (1981) On the Combinatorial Problems Which I Would Most Like to See Solved. Combinatorica, 1, 25-42.
https://doi.org/10.1007/BF02579174
[2]  Chang, W.I. and Lawler, E.L. (1988) Edge Coloring of Hypergraphs and a Conjecture of Erdos, Faber, Lovász. Combinatorica, 8, 293-295.
https://doi.org/10.1007/BF02126801
[3]  Seymour, P. (1982) Packing Nearly-Disjoint Sets. Combinatorica, 2, 91-97.
https://doi.org/10.1007/BF02579285
[4]  Kahn, J. and Seymour, P.D. (1992) A Fractional Version of the Erdos-Faber-Lovász Conjecture. Combinatorica, 12, 155-160.
https://doi.org/10.1007/BF01204719
[5]  Kahn, J. (1992) Coloring Nearly-Disjoint Hypergraphs with n + o(n) Colors. Journal of Combinatorial Theory, Series A, 59, 31-39.
https://doi.org/10.1016/0097-3165(92)90096-D
[6]  Sánchez-Arroyo, A. (2008) The Erdos-Faber-Lovász Conjecture for Dense Hypergraphs. Discrete Mathematics, 308, 991-992.
https://doi.org/10.1016/j.disc.2007.09.026
[7]  Romero, D. and Alonso-Pecina, F. (2014) The Erdos-Faber-Lovász Conjecture Is True for n ≤ 12. Discrete Mathematics, Algorithms and Applications, 6, Article ID: 1450039.
https://doi.org/10.1142/S1793830914500396
[8]  Faber, V. and Harris, D. (2019) Edge-Coloring Linear Hypergraphs with Medium- Sized Edges. Random Structures & Algorithms, 55, 153-159.
https://doi.org/10.1002/rsa.20843
[9]  Bretto, A., Faisant, A. and Hennecart, F., (2020) On Hyperedge Coloring of Weakly Trianguled Hypergraphs and Well Ordered Hypergraphs. Discrete Mathematics, 343.
https://doi.org/10.1016/j.disc.2020.112059
[10]  Alesandroni, G. (2021) The Erdos-Faber-Lovász Conjecture for Weakly Dense Hypergraphs. Discrete Mathematics, 344.
https://doi.org/10.1016/j.disc.2021.112401
[11]  Kang, D., Kelly, T., Kühn, D., Methuku, A. and Osthus, D. (2023) A Proof of the Erdos-Faber-Lovász Conjecture. Annals of Mathematics, 198, 537-618.
https://doi.org/10.4007/annals.2023.198.2.2
[12]  Wang, Q. and Zhang, X. (2023) A Note on Edge Coloring of Linear Hypergraphs. Journal of Mathematical Research with Applications, 43, 535-541.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133