全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一维交替在位作用(t-U-X)模型的基态相图
Phase Diagram of the One-Dimensional t-U-X Model with Different Hubbard Interactions

DOI: 10.12677/CMP.2024.131002, PP. 7-14

Keywords: 一维t-U-X模型,不相等Hubbard相互作用,相图,四分之一填充,弱耦合
1D t-U-X Model
, Different Hubbard Interaction, Phase Diagram, Quarter Filling, Weak Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

在弱耦合条件下,我们研究了奇(Uo)、偶(Ue)晶格上不相等Hubbard相互作用的一维非常规t-U-X模型的量子特质。在四分之一填充时,在\"\" 的情况下,不相等的在位排斥相互作用导致umklapp过程的发生。玻色化和重整化群分析有助于获得基态相图,包括一个单相超导序的金属相和分别具有自旋密度波和电荷密度波的二个绝缘相。
At weak coupling, we examine quantum properties of the one-dimensional unconventional t-U-X model with unequal Hubbard interaction at even (Ue) and odd (Uo) lattices. At quarter filling, the unequal on-site repulsive interactions have a key effect that leads to the occurrence of umklapp processes in the case of \"\" . The bosonization and renormalization-group analysis helps get the ground-state phase diagram, which includes a metallic phase with the singlet superconductivity instability and two insulating with the spin- and charge-density-wave instabili-ties.

References

[1]  Hubbard, J. (1963) Electron Correlations in Narrow Energy Bands. Proceedings of the Royal Society of London, Series A, 276, 238-257.
https://doi.org/10.1098/rspa.1963.0204
[2]  Kivelson, S., Su, W.P., Schrieffer, J.R. and Heeger, A.J. (1987) Missing Bond-Charge Repulsion in the Extended Hubbard Model: Effects in Polyacetylene. Physical Review Letters, 58, 1899-1902.
https://doi.org/10.1103/PhysRevLett.58.1899
[3]  Strack, R. and Vollhardt, D. (1994) Rigorous Criteria for Ferromagnetism in Itinerant Electron Systems. Physical Review Letters, 72, 3425-3428.
https://doi.org/10.1103/PhysRevLett.72.3425
[4]  Campbell, D.K., Gammel, J.T. and Loh, E.Y. (1990) Mod-eling Electron-Electron Interactions in Reduced-Dimensional Materials: Bond-Charge Coulomb Repulsion and Dimerization in Peierls-Hubbard Models. Physical Review B, 42, 475-492.
https://doi.org/10.1103/PhysRevB.42.475
[5]  Painelli, A. and Girlando (1989) Electron Correlations in One Dimension: The Hubbard Model. Physical Review B, 39, 2830.
https://doi.org/10.1103/PhysRevB.39.2830
[6]  Strack, R. and Vollhardt, D. (1993) Hubbard Model with Nearest-Neighbor and Bondcharge Interaction: Exact Ground-State Solution in a Wide Range of Parameters. Physical Review Letters, 70, 2637-2640.
https://doi.org/10.1103/PhysRevLett.70.2637
[7]  Airoldi, M. and Parola, A. (1995) Superconducting Ground State in a Model with Bendcharge Interaction. Physical Review B, 51, 16327-16335.
https://doi.org/10.1103/PhysRevB.51.16327
[8]  Luz, D.M. and Santos, R.R. (1996) Bond-Charge Interaction in the Extended Hubbard Chain. Physical Review B, 54, 1302-1307.
https://doi.org/10.1103/PhysRevB.54.1302
[9]  Foglio, M.E. and Falicov, L.M. (1979) New Approach to the Theory of Intermediate Valence. I. General Formation. Physical Review B, 20, 4554.
https://doi.org/10.1103/PhysRevB.20.4554
[10]  Marsiglio, F.M. and Hirsch, J.E. (1990) Hole Superconduc-tivity and the High-Tc Oxides. Physical Review B, 41, 6435-6456.
https://doi.org/10.1103/PhysRevB.41.6435
[11]  FHL, Korepin, V.E. and Schoutens, K. (1993) Electronic Model for Superconductivity. Physical Review Letters, 70, 73-76.
https://doi.org/10.1103/PhysRevLett.70.73
[12]  Dolcini, F. and Montorsi, A. (2002) Finite-Temperature Properties of the Hubbard Chain with Bond-Charge Interaction. Physical Review B, 66, Article ID: 075112.
https://doi.org/10.1103/PhysRevB.66.075112
[13]  Anfossi, A., Giorda, P., Montorsi, A. and Traversa, F. (2005) Two-Point versus Multipartite Entanglement in Quantum Phase Transitions. Physical Review Letters, 95, Article ID: 056402.
https://doi.org/10.1103/PhysRevLett.95.056402
[14]  Dobry, A.O. and Aligia, A.A. (2011) Quantum Phase Diagram of the Half Filled Hubbard Model with Bond-Charge Interaction. Nuclear Physics B, 843, 767-783.
https://doi.org/10.1016/j.nuclphysb.2010.10.017
[15]  Dolcini, F. and Montorsi, A. (2013) Quantum Phases of One-Dimensional Hubbard Models with Three- and Four-Body Couplings. Physical Review B, 88, Article ID: 115115.
https://doi.org/10.1103/PhysRevB.88.115115
[16]  Chen, W.T., Zhang, J. and Ding, H.Q. (2023) Ground-State Instabilities in a Hubbardtype Chain with Particular Correlated Hopping at Non-Half Filling. Results in Physics, 49, Article ID: 106472.
https://doi.org/10.1016/j.rinp.2023.106472
[17]  Aligia, A.A., Anfossi, A., Arrachea, I., Boschi, C.D.L., Dobry, A.O. and Gazza, C. (2007) Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction. Physical Review Letters, 99, Article ID: 206401.
https://doi.org/10.1103/PhysRevLett.99.206401
[18]  Buzatu, F.D. (1994) Phase Diagram (T, U, X) Model: Ground-State Phase Diagram in a Mean-Field-Type Approximation. Physical Review B, 49, 10176.
https://doi.org/10.1103/PhysRevB.49.10176
[19]  Schadschneider, A. (1995) Superconductivity in an Exactly Solvable Hubbard Model with Bond-Charge Interaction. Physical Review B, 51, 10386.
https://doi.org/10.1103/PhysRevB.51.10386
[20]  Bu Lka, B.R. (1998) Superconductivity in the Hubbard Model with Correlated Hopping: Slave-Boson Study. Physical Review B, 57, 10303-10306.
https://doi.org/10.1103/PhysRevB.57.10303
[21]  Anfossi, A., Boschi, C.D.E., Montorsi, A. and Ortolani, F. (2006) Single-Site Entanglement at the Superconductor-Insulator Transition in the Hirsch Model. Physical Review B, 73, Article ID: 085113.
https://doi.org/10.1103/PhysRevB.73.085113
[22]  Hubsch, A., Lin, J.C., Pan, J. and Cox, D.L. (2006) Cor-related Hybridization in Transition-Metal Complexes. Physical Review Letters, 96, Article ID: 196401.
https://doi.org/10.1103/PhysRevLett.96.196401
[23]  Voit, J. (1992) Phase Diagram and Correlation Functons of the Half-Filled Hubbard Model in One Dimension. Physical Review B, 45, 4027-4042.
https://doi.org/10.1103/PhysRevB.45.4027
[24]  Nakamura, M. (2000) Tricritical Behavior in the Extended Hubbard Chains. Physical Review B, 61, 16377-16392.
https://doi.org/10.1103/PhysRevB.61.16377
[25]  Jeckelmann, E. (2002) Ground State Phases of the Half-Filled One-Dimensional Extended Hubbard Model. Physical Review Letters, 89, Article ID: 236401.
https://doi.org/10.1103/PhysRevLett.89.236401
[26]  Tsuchiizu, M. and Furusaki, A. (2002) Phase Diagram of the One-Dimensional Extended Hubbard Model at Half Fiiling. Physical Review Letters, 88, Article ID: 056402.
https://doi.org/10.1103/PhysRevLett.88.056402
[27]  Sandvik, A.W., Balents, L. and Campbell, D.K. (2004) Ground State Phases of the Half-Filled One-Dimensional Extended Hubbard Model. Physical Review Letters, 92, Article ID: 236401.
https://doi.org/10.1103/PhysRevLett.92.236401
[28]  Tam, K.M., Tsai, S.W. and Campbell, D.K. (2006) Functional Renormalization Group Analysis of the Half-Filled One-Dimensional Extended Hubbard Model. Physical Review Letters, 96, Article ID: 036408.
https://doi.org/10.1103/PhysRevLett.96.036408
[29]  Ejima, S. and Nishimoto, S. (2007) Phase Diagram of the One-Dimensional Half-Filled Extended Hubbard Model. Physical Review Letters, 99, Article ID: 216403.
https://doi.org/10.1103/PhysRevLett.99.216403
[30]  Menard, M. and Bourbonnais, C. (2011) Renormalization Group Analysis of the Onedimensional Extended Hubbard Model. Physical Review B, 83, Article ID: 075211.
https://doi.org/10.1103/PhysRevB.83.075111
[31]  De Boer, J., Korepin, V.E. and Schdaschneider, A. (1995) η Pairing as a Mechanism of Superconductivity in Models of Strongly Correlated Electrons. Physical Review Letters, 74, 789-792.
https://doi.org/10.1103/PhysRevLett.74.789
[32]  Emery, VJ. (1987) Theory of High-Tc Supercon-ductivity in Oxides. Physical Review Letters, 58, 2794-2797.
https://doi.org/10.1103/PhysRevLett.58.2794
[33]  Emery, V.J. (1990) Strong-Coupling Field Theory and Sol-iton Doping in a One-Dimensional Copper-Oxide Model. Physical Review Letters, 65, 1076-1079.
https://doi.org/10.1103/PhysRevLett.65.1076
[34]  Japaridze, G., Khomskili, D. and Muller-Hartmann, E. (1993) The One-Dimensional 1/4-Filled Hubbard Model with Alternating Interactions. Annalen der Physik, 2, 38-50.
https://doi.org/10.1002/andp.19935050105
[35]  Gogolin, A.O., Nersesyan, A.A. and Tsvelik, A.M. (1998) Bosonization and Strongly Correlated Systems. Cambridge University Press, New York.
[36]  Emery, V.J. (1979) Highly Conducting One-Dimensional Solids. Plenum, New York.
[37]  Solyom, J. (1979) The Fermi Gas Model of One-Dimensional Conductors. Advances in Physics, 28, 201-303.
https://doi.org/10.1080/00018737900101375
[38]  Montorsi, A., Dolcini, F., Iotti, R.C. and Rossi, F. (2017) Symmetry-Protected Topological Phases of One-Dimensional Interacting Fermions with Spin-Charge Separation. Physical Review B, 95, Article ID: 245108.
https://doi.org/10.1103/PhysRevB.95.245108
[39]  Giamarch, T. (2003) Quantum Physics in One Dimension. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
[40]  Tsvelik, A.M. (1995) Quantum Field Theory in Condensed Matter Physics. Cambridge University Press, New York.
[41]  Japaridze, G.I. and Mul-ler-Hartmann, E. (1997) Bond-Located Ordering in the One-Dimensional Penson-Kolb-Hubbard Model. Journal of Physics C, 9, 10509-10519.
https://doi.org/10.1088/0953-8984/9/47/018
[42]  Luther, A. and Emery, V.J. (1974) Backward Scattering in the One-Dimensional Electron Gas. Physical Review Letters, 33, 589-592.
https://doi.org/10.1103/PhysRevLett.33.589

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133