|
高压下磷酸酯类离子液体1-(O,O-二乙基膦酰丙基)-3-辛基咪唑六氟磷酸盐的拉曼光谱和粘度研究
|
Abstract:
磷酸酯类离子液体1-(O,O-二乙基膦酰丙基)-3-辛基咪唑六氟磷酸盐([DPPOIM][PF6])是一种新型的润滑剂材料,本文利用拉曼光谱和自制的高压粘度测量装置对其在高压的结构、相变及粘度进行了研究。基于高压拉曼光谱结果和红宝石荧光峰峰位的分析,推断[DPPOIM][PF6]的玻璃化转变压力约为2.9 GPa,[DPPOIM][PF6]在该压力点由液态转变为玻璃态。采用自制的粘度测量装置测得[DPPOIM][PF6]高压下的粘度数据,并将粘度与压力的关系进行线性拟合,获得[DPPOIM][PF6]的玻璃化转变压力点为2.6 GPa,这与分析红宝石荧光峰获得的结果基本一致。通过研究磷酸酯类离子液体润滑剂在高压下的拉曼光谱和粘度,对于拓宽其在高压等极端条件下的应用具有非常重要的实用价值。
Phosphateionic liquid 1-(O,O-diethylphosphonyl-n-propyl)-3-octylimidazolium hexafluorophosphate ([DPPOIM][PF6]) is a novel lubricant. The structure, phase transition, and viscosity of [DPPOIM][PF6] under high pressure were studied by Raman spectroscopy and a homemade high-pressure viscosity device. By analyzing the peak positions of Raman spectra and ruby fluorescence peaks, it could be inferred that [DPPOIM][PF6] underwent a glass transition near 2.9 GPa, from a liquid state to a glassy state. The viscosity data of [DPPOIM][PF6] under high pressure were measured using a homemade viscosity device, and the relationship between viscosity and pressure was linearly fitted to obtain the glass transition pressure of 2.6 GPa, which was basically consistent with the glass transition pressure obtained by analyzing Raman spectra and ruby fluorescence peaks for [DPPOIM][PF6]. The study of the Raman spectra and viscosity of phosphate ionic liquid under high pressure is of great practical significance for expanding their applications under extreme conditions such as high pressure.
[1] | Chen, Y., Qu, Z., Hu, H. and Gao, Y. (2023) Nonaqueous Amino-Phenolic Dual-Functionalized Ionic Liquid Absorbents for Reversible CO2 Capture: Phase Change Behaviors and Mechanism. Separation and Purification Technology, 308, Article ID: 122986. https://doi.org/10.1016/j.seppur.2022.122986 |
[2] | Wu, X., Xu, L., Zhou, Z., He, W., Liu, W., Zhang, F. and Ren, Z. (2022) Application of Silver Ionic Liquid in the Separation of Olefin and Alkane. Journal of Chemical Technology and Biotechnology, 97, 1207-1214.
https://doi.org/10.1002/jctb.7009 |
[3] | Sesto, R.E.D., Corley, C., Robertson, A. and Wilkes, J.S. (2005) Tetraalkylphosphonium-Based Ionic Liquids. Journal of Organometallic Chemistry, 690, 2536-2542. https://doi.org/10.1016/j.jorganchem.2004.09.060 |
[4] | Song, Y.Y., Jin, Q.R, Zhang, S.L., Jing, H.W. and Zhu, Q.Q. (2011) Chiral Metal-Containing Ionic Liquid: Synthesis and Applications in the Enantioselective Cycloaddition of Carbon Dioxide to Epoxides. Science China Chemistry, 54, 1044-1050. https://doi.org/10.1007/s11426-011-4274-2 |
[5] | 牟宗刚, 梁永民, 张书香, 王海忠, 刘维民. 含膦酸酯官能团离子液体对钢/铝摩擦副的润滑作用研究[J]. 摩擦学学报, 2004, 24(4): 294-298. |
[6] | 王海忠, 曾俊菱, 冯大鹏, 吕晋军, 刘维民. 离子液体作为SI3N4-TI3SiC2摩擦副润滑剂的摩擦学性能研究[J]. 摩擦学学报, 2013, 33(6): 537-542. |
[7] | Li, X.F., Mu, Z.G., Wang, X.X., Zhang, S.X. and Zhou, F. (2010) Tribological Performance of Ionic Liquids Bearing Hydroxyl Groups as Lubricants in the Aluminum-on-Steel Contacts. Advanced Materials Research, 146-147, 1147-1153.
https://doi.org/10.4028/www.scientific.net/AMR.146-147.1147 |
[8] | 杨斌, 程杰, 李国芳. 浅谈旋转粘度计的使用[J]. 现代制造技术与装备, 2014(2): 52, 58. |
[9] | Matsuo, S. and Makita, T. (1991) Viscosity of Methanol and 2-Methyl-2-Propanol Mixtures under High Pressures. International Journal of Thermophysics, 12, 459-468. https://doi.org/10.1007/BF00502362 |
[10] | Assael, M.J. and Mylona, S.K. (2013) A Novel Vibrating-Wire Viscometer for High-Viscosity Liquids at Moderate Pressures. Journal of Chemical & Engineering Data, 58, 993-1000. https://doi.org/10.1021/je301306e |
[11] | Habrioux, M., Bazile, J.P., Galliero, G. and Daridon, J.L. (2016) Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. Journal of Chemical & Engineering Data, 60, 902-908.
https://doi.org/10.1021/je500980a |
[12] | 褚昆昆, 杨坤, 朱祥, 李海宁, 苏磊. 基于金刚石对顶砧的液体高压黏度测量[J]. 高压物理学报, 2016, 30(5): 358-362. |
[13] | 刘维民, 牟宗刚, 周峰, 王海忠. 含膦酸酯官能团的离子液体及其制备方法和用途[P]. 中国专利, CN200310117751.3. 2003-12-30. |
[14] | Mu, Z.G., Zhou, F., Zhang, S.X., Liang, Y.M. and Liu, W.M. (2005) Preparation and Characterization of New Phosphonyl-Substituted Imidazolium Ionic Liquids. Cheminform, 36, 2549-2555. https://doi.org/10.1002/chin.200508184 |
[15] | Mao, H.K., Bell, P.M., Shaner, J.W. and Steinberg, D.J. (1978) Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49, 3276-3283. https://doi.org/10.1063/1.325277 |
[16] | 李海宁. 高压下咪唑类离子液体的凝聚态结构, 性质和物态方程研究[D]: [博士学位论文]. 武汉: 武汉理工大学, 2018. |
[17] | Piermarini, G.J., Forman, R.A. and Block, S. (1978) Viscosity Measurements in the Diamond Anvil Pressure Cell. Review of Scientific Instruments, 49, 1061-1066. https://doi.org/10.1063/1.1135514 |
[18] | Talaty, E.R., Raja, S., Storhaug, V.J., Doollle, A. and Carper, W.R. (2004) Raman and Infrared Spectra and ab Initio Calculations of C2-4MIM Imidazolium Hexafluorophosphate Ionic Liquids. Journal of Physical Chemistry B, 108, 13177-13184. https://doi.org/10.1021/jp040199s |
[19] | Berg, R.W., Deetlefs, M., Seddon, K.R., Shim, I. and Thompson, J.M. (2005) Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-Methylimidazolium Ionic Liquids. Journal of Physical Chemistry B, 109, 19018-19025.
https://doi.org/10.1021/jp050691r |
[20] | Paschoal, V.H., Faria, L.F.O. and Ribeiro, M.C.C. (2017) Vibrational Spectroscopy of Ionic Liquids. Chemical Reviews, 117, 7053-7112. https://doi.org/10.1021/acs.chemrev.6b00461 |
[21] | Piermarini, G.J., Block, S. and Barnett, J.D. (1973) Hydrostatic Limits in Liquids and Solids to 100 Kbar. Journal of Applied Physics, 44, 5377-5382. https://doi.org/10.1063/1.1662159 |
[22] | Takemura, K. (2007) Pressure Scales and Hydrostaticity. High Pressure Research, 27, 465-472.
https://doi.org/10.1080/08957950701659767 |