The “mainstream” climatology (MSC)—i.e. which includes the
Intergovernmental Panel on Climate Change (IPCC) community—considers the
present day massive release of greenhouse
gases into the atmosphere as the main cause of the current global
warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse
gases originating from the anthropic activities. However, no scientific
evidence has been provided for this basic notion. Earth paleoclimatic records
document the antecedence of temperature over CO2 levels. For the
past 65 Ma, the temperature parameter has
controlled the subsequent increase in CO2. This includes the
three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and
23 MaREF _Ref159913672 \r \h\* MERGEFORMAT [1]. The
simple fact of their existence points to the
potential for highly nonlinear responses in climate forcing. Whatever
these shifts and transients are, CO2 remains a second order
parameter in their evolution through time. Confronted with the past, a suitable
response must therefore be given to the unresolved question of whether the CO2 trends precede the temperature trends in the current period, or not. The
assertion that the current global warming is anthropogenic in origin implicitly
presupposes a change of paradigm, with the consequence (the increase in
References
[1]
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-692. https://doi.org/10.1126/science.1059412
[2]
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappelaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436. https://doi.org/10.1038/20859
[3]
Bréon, F.-M. (2016) Changement Climatique, l’état des connaissances scientifiques. Science et Pseudo-Sciences, 317, 11-19.
[4]
Milankovitch, M. (1941) Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publication 133, Belgrade, 633 p.
[5]
Dickens, G.R. (2000) Methane Oxidation during the Late Paleocene Thermal Maximum. Bulletin de la Société Géologique de France, 171, 37-49.
[6]
Zachos, J., Quinn, T.M. and Salamy, K.A. (1996) High-Resolution (104 Years) Deep-Sea Foraminiferal Stable Isotope Records of the Eocene-Oligocene Climate Transition. Paleoceanography, 11, 251-256. https://doi.org/10.1029/96PA00571
[7]
Zachos, J., Flower, B.P. and Paul, H. (1997) Orbitally Paced Climate Oscillations across the Oligocene/Miocene Boundary. Nature, 388, 567-571. https://doi.org/10.1038/41528
[8]
Vaughan, D.G. (2005) How Does the Antarctic Ice Sheet Affect Sea Level Rise. Science, 308, 1877-1878. https://doi.org/10.1126/science.1114670
[9]
Das, S.B., Joughin, I., Behn, M.D., Howat, I.M., King, M.A., Lizarralde, D. and Bhatia, M.P. (2008) Fracture Propagation to the Base of the Greenland Ice Sheet during Supraglacial Lake Drainage. Science, 320, 778-781. https://doi.org/10.1126/science.1153360
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. and Sambridge, M. (2014) Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Science, 111, 15296-15303. https://doi.org/10.1073/pnas.1411762111
[12]
Moore, R. (2019) IPCC Report: Sea Level Rise Is a Present and Future Danger. Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, and New York, 755 p.
[13]
Koonin, S.E. (2021) Unsettled—What Climate Science Tell Us, What It Doesn’t and Why It Matters. BenBella Books, Inc., Dallas, 306 p.
[14]
Koonin, S.E. (2022) Climat la part d’incertitude. Edition du Toucan, Paris, 348 p.
[15]
Hansen, J.E. (2007) Scientific Reticence and Sea Level Rise. Environmental Research Letters, 2, Article ID: 024002. https://doi.org/10.1088/1748-9326/2/2/024002
[16]
Masson-Delmotte, V. (2022) Il y a encore aujourd’hui un déni de la gravité des enjeux climatiques. CNRS Le Journal, 308, 13-21.
[17]
Hansen, J., Sato, M., Russell, G. and Kharecha, P. (2013) Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide. Philosophical Transactions of the Royal Society A, 371, Article ID: 20120294. https://doi.org/10.1098/rsta.2012.0294
[18]
Hays, J.D., Imbrie, J. and Shackleton, N.J. (1976) Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194, 1121-1132. https://doi.org/10.1126/science.194.4270.1121
[19]
Ohneiser, C., Hulbe, C.L., Beltran, C., Riesselman, C.R., Moy, C.M., Condon, D.B. and Worthington, R.A. (2023) West Antarctica Ice Volume Variability Paced by Obliquity until 400,000 Years Ago. Nature Geoscience, 16, 44-49. https://doi.org/10.1038/s41561-022-01088-w
[20]
Yan, Y., Kurbatov, A.V., Mayewski, P.A., Shackleton, S. and Higgins, J.A. (2023) Early Pleistocene East Antarctic Temperature in Phase with Local Insolation. Nature Geoscience, 16, 50-55. https://doi.org/10.1038/s41561-022-01095-x
[21]
Energy Matters (2023) The Vostok Ice Core: Temperature, CO2 and CH4. https://euanmearns.com
[22]
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S.O., Severi, M., Svensson, A., Vinther, B. and Wolff, E.W. (2013) The Antarctic Ice Core Chronology (AICC2012): An Optimized Multi-Parameter and Multi-Site Dating Approach for the Last 120 Thousand Years. Climate of the Past, 9, 1733-1748. https://doi.org/10.5194/cp-9-1733-2013
[23]
Bazin, L., Landais, A., Lemieux-Dudon, B., Toye Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S.O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J. and Wolff, E. (2013) An Optimized Multi-Proxy, Multi-Site Antarctic Ice and Gas Orbit Chronology (AICC2012): 120-800 ka. Climate of the Past, 9, 1715-1731. https://doi.org/10.5194/cp-9-1715-2013
[24]
Hayhoe, K., Doherty, S., Kossin, J.P., Sweet, W.V., Vose, R.S., Wehner, M.F. and Wuebles (2017) Fourth National Climate Assessment, Chapter 2: Our Changing Climate.
[25]
Hansen, J.E. (2005) Earth’s Energy Imbalance: Confirmation and Implication. Science, 308, 1431-1435. https://doi.org/10.1126/science.1110252
[26]
Duncan, B., McKay, R. and Levy, R. (2022) Climatic and Tectonic Drivers of Late Oligocene Antarctic Ice Volume. Nature Geoscience, 15, 819-825. https://doi.org/10.1038/s41561-022-01025-x
[27]
Stark, P.B. (2022) Pay No Attention to the Models behind the Curtain. Pure and Applied Geophysics, 179, 4121-4145. https://doi.org/10.1007/s00024-022-03137-2
[28]
IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, and New York, 755 p.
[29]
Berger, A. and Loutre, M.-F. (2004) Théorie astronomique des paleoclimats. Comptes Rendus Geoscience, 336, 701-709. https://doi.org/10.1016/j.crte.2004.02.006