全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Sword of Damocles behind the Curtain of the Earth’s Global Warming: A Review

DOI: 10.4236/ijg.2024.152009, PP. 119-136

Keywords: Climate, CO2, Temperature, Paleoclimate, Warming

Full-Text   Cite this paper   Add to My Lib

Abstract:

The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO2 levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO2. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO2 remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO2 trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in

References

[1]  Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-692.
https://doi.org/10.1126/science.1059412
[2]  Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappelaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. and Stievenard, M. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
https://doi.org/10.1038/20859
[3]  Bréon, F.-M. (2016) Changement Climatique, l’état des connaissances scientifiques. Science et Pseudo-Sciences, 317, 11-19.
[4]  Milankovitch, M. (1941) Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publication 133, Belgrade, 633 p.
[5]  Dickens, G.R. (2000) Methane Oxidation during the Late Paleocene Thermal Maximum. Bulletin de la Société Géologique de France, 171, 37-49.
[6]  Zachos, J., Quinn, T.M. and Salamy, K.A. (1996) High-Resolution (104 Years) Deep-Sea Foraminiferal Stable Isotope Records of the Eocene-Oligocene Climate Transition. Paleoceanography, 11, 251-256.
https://doi.org/10.1029/96PA00571
[7]  Zachos, J., Flower, B.P. and Paul, H. (1997) Orbitally Paced Climate Oscillations across the Oligocene/Miocene Boundary. Nature, 388, 567-571.
https://doi.org/10.1038/41528
[8]  Vaughan, D.G. (2005) How Does the Antarctic Ice Sheet Affect Sea Level Rise. Science, 308, 1877-1878.
https://doi.org/10.1126/science.1114670
[9]  Das, S.B., Joughin, I., Behn, M.D., Howat, I.M., King, M.A., Lizarralde, D. and Bhatia, M.P. (2008) Fracture Propagation to the Base of the Greenland Ice Sheet during Supraglacial Lake Drainage. Science, 320, 778-781.
https://doi.org/10.1126/science.1153360
[10]  Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., Owen, L.A., Wanner, H., Wiles, G.C. and Young, N.E. (2015) Holocene Glacier Fluctuations. Quaternary Science Reviews, 111, 9-34.
https://doi.org/10.1016/j.quascirev.2014.11.018
[11]  Lambeck, K., Rouby, H., Purcell, A., Sun, Y. and Sambridge, M. (2014) Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Science, 111, 15296-15303.
https://doi.org/10.1073/pnas.1411762111
[12]  Moore, R. (2019) IPCC Report: Sea Level Rise Is a Present and Future Danger. Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, and New York, 755 p.
[13]  Koonin, S.E. (2021) Unsettled—What Climate Science Tell Us, What It Doesn’t and Why It Matters. BenBella Books, Inc., Dallas, 306 p.
[14]  Koonin, S.E. (2022) Climat la part d’incertitude. Edition du Toucan, Paris, 348 p.
[15]  Hansen, J.E. (2007) Scientific Reticence and Sea Level Rise. Environmental Research Letters, 2, Article ID: 024002.
https://doi.org/10.1088/1748-9326/2/2/024002
[16]  Masson-Delmotte, V. (2022) Il y a encore aujourd’hui un déni de la gravité des enjeux climatiques. CNRS Le Journal, 308, 13-21.
[17]  Hansen, J., Sato, M., Russell, G. and Kharecha, P. (2013) Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide. Philosophical Transactions of the Royal Society A, 371, Article ID: 20120294.
https://doi.org/10.1098/rsta.2012.0294
[18]  Hays, J.D., Imbrie, J. and Shackleton, N.J. (1976) Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194, 1121-1132.
https://doi.org/10.1126/science.194.4270.1121
[19]  Ohneiser, C., Hulbe, C.L., Beltran, C., Riesselman, C.R., Moy, C.M., Condon, D.B. and Worthington, R.A. (2023) West Antarctica Ice Volume Variability Paced by Obliquity until 400,000 Years Ago. Nature Geoscience, 16, 44-49.
https://doi.org/10.1038/s41561-022-01088-w
[20]  Yan, Y., Kurbatov, A.V., Mayewski, P.A., Shackleton, S. and Higgins, J.A. (2023) Early Pleistocene East Antarctic Temperature in Phase with Local Insolation. Nature Geoscience, 16, 50-55.
https://doi.org/10.1038/s41561-022-01095-x
[21]  Energy Matters (2023) The Vostok Ice Core: Temperature, CO2 and CH4.
https://euanmearns.com
[22]  Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S.O., Severi, M., Svensson, A., Vinther, B. and Wolff, E.W. (2013) The Antarctic Ice Core Chronology (AICC2012): An Optimized Multi-Parameter and Multi-Site Dating Approach for the Last 120 Thousand Years. Climate of the Past, 9, 1733-1748.
https://doi.org/10.5194/cp-9-1733-2013
[23]  Bazin, L., Landais, A., Lemieux-Dudon, B., Toye Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S.O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J. and Wolff, E. (2013) An Optimized Multi-Proxy, Multi-Site Antarctic Ice and Gas Orbit Chronology (AICC2012): 120-800 ka. Climate of the Past, 9, 1715-1731.
https://doi.org/10.5194/cp-9-1715-2013
[24]  Hayhoe, K., Doherty, S., Kossin, J.P., Sweet, W.V., Vose, R.S., Wehner, M.F. and Wuebles (2017) Fourth National Climate Assessment, Chapter 2: Our Changing Climate.
[25]  Hansen, J.E. (2005) Earth’s Energy Imbalance: Confirmation and Implication. Science, 308, 1431-1435.
https://doi.org/10.1126/science.1110252
[26]  Duncan, B., McKay, R. and Levy, R. (2022) Climatic and Tectonic Drivers of Late Oligocene Antarctic Ice Volume. Nature Geoscience, 15, 819-825.
https://doi.org/10.1038/s41561-022-01025-x
[27]  Stark, P.B. (2022) Pay No Attention to the Models behind the Curtain. Pure and Applied Geophysics, 179, 4121-4145.
https://doi.org/10.1007/s00024-022-03137-2
[28]  IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, and New York, 755 p.
[29]  Berger, A. and Loutre, M.-F. (2004) Théorie astronomique des paleoclimats. Comptes Rendus Geoscience, 336, 701-709.
https://doi.org/10.1016/j.crte.2004.02.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133