全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Elements of Electromagnetic Matter

DOI: 10.4236/jmp.2024.153013, PP. 250-270

Keywords: Maxwell’s Equations, Relativistic Electrodynamics, Quaternion Calculus

Full-Text   Cite this paper   Add to My Lib

Abstract:

Originally, Maxwell attempted to express his electromagnetic theory using four-dimensional mathematics of quaternions. Maxwell’s equations were later re-written in a three-dimensional real vector form, which is how the theory is presented today. Thus, an interesting question remains whether we can derive electromagnetic equations analytically from the basic mathematical principles of quaternion algebra and calculus, resulting in general and analytic matter equations. This question seems highly intriguing. Previously, we developed a mathematical theory of time using a normed division algebra of real quaternions [1]. In this study, we extend the theory of time by presenting a new analytical derivation of electromagnetic matter equations using the calculus of real quaternions, as originally intended by Maxwell. Therefore, we propose a novel mathematical definition of the quaternion path derivative using the properties of quaternion division. We then apply the quaternion derivative to an external electromagnetic potential and assume that the first quaternion derivative represents the quaternion electromagnetic force. Next, we assume that the second derivative, or quaternion Laplacian operator, applied to an external electromagnetic potential leads to the quaternion electromagnetic current density. The new analytical expressions are similar to the original empirical Maxwell equations, except for an additional scalar electric field, which allows for a novel formulation of Ohm’s conductivity law. We demonstrate that the resulting analytical equations can be written equivalently using either electromagnetic potentials or fields. Finally, we summarize the key postulates and equations of the new electromagnetic matter theory, which were based on normed division algebra and the calculus of quaternions. The resulting theory appears to be a useful analytical enhancement of the original Maxwell equations, and therefore, seems highly comprehensive, logical, and compelling.

References

[1]  Ariel, V. (2023) Journal of Modern Physics, 14, 1537-1561.
https://doi.org/10.4236/jmp.2023.1411089
[2]  Doppler, C. (1843) Proceedings of the Royal Bohemian Society of Sciences, 5, 465-482.
[3]  Voigt, A. (1887) On the Principle of Doppler, Nachrichten von der Königl. Gesell-schaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingenaus dem Jahre. V. 1887.
[4]  Ives, H.E. (1937) Journal of the Optical Society of America, 27, 389-388.
https://doi.org/10.1364/JOSA.27.000389
[5]  Ives, H.E. and Stilwell, G.R. (1038) Journal of the Optical Society of America, 28, 215-219.
https://doi.org/10.1364/JOSA.28.000215
[6]  Frobenius, G. (1878) Journal für die Reine und Angewandte Mathematik, 84, 1-63.
https://doi.org/10.1515/crll.1878.84.1
[7]  Hurwitz, A. (1898) über die Komposition der quadratischen Formen von beliebig vielen Variablen. In: Hurwitz, A., Ed., Mathematische Werke, Springer, Berlin, 565-571.
[8]  Maxwell, J.C. (1871) Proceedings of the London Mathematical Society, 3, 224.
[9]  Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Vol. 2, Clarendon Press, Oxford, 236-237.
[10]  Hamilton, W.R. (1843) Proceedings of the Royal Irish Academy, 2, 424-434.
[11]  Hamilton, W.R. (1847) Proceedings of the Royal Irish Academy, 3, 1-16.
[12]  Heaviside, O. (1892) Proceedings of the Royal Society, 50, 521-574.
[13]  Huray, P.G. (2010) Maxwell’s Equations. Wiley, Hoboken, 21-22.
https://doi.org/10.1002/9780470549919
[14]  Griffiths, D.J. (2007) Introduction to Electrodynamics. 3rd Edition, Pearson Education, Dorling Kindersley, London.
[15]  Conway, A.W. (1912) Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 27, 1-8.
[16]  Conway, A.W. (1911) Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 29, 1-9.
[17]  Silberstein, L. (1912) Philosophical Magazine, 14, 790-809.
https://doi.org/10.1080/14786440508637276
[18]  Silberstein, L. (1913) Philosophical Magazine, 15, 135-144.
https://doi.org/10.1080/14786440108634317
[19]  Einstein, A. (1905) Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[20]  Waser, A. (2000) Quaternions in Electrodynamics. AW-Verlag, Dietikon.
[21]  Arbab, A.I. and Satti, Z.A. (2009) Progress in Physics, 2, 8-13.
[22]  Arbab, A.I. and Yassein, F.A. (2010) Journal of Electromagnetic Analysis and Applications, 2, 457-461.
https://doi.org/10.4236/jemaa.2010.28060
[23]  Adler, S.L. (1995) Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford.
https://doi.org/10.1093/oso/9780195066432.001.0001
[24]  Horwitz, L.P. and Biedenharn, L.C. (1984) Annals of Physics, 157, 432-488.
https://doi.org/10.1016/0003-4916(84)90068-X
[25]  Horwitz, L.P. (2015) Relativistic Quantum Mechanics. Springer, Berlin.
https://doi.org/10.1007/978-94-017-7261-7
[26]  Chanyal, B.C. (2018) Canadian Journal of Physics, 96, 1192-1200.
https://doi.org/10.1139/cjp-2017-0996
[27]  Chanyal, B.C. (2019) International Journal of Modern Physics A, 34, Article ID: 1950202.
https://doi.org/10.1142/S0217751X19502026
[28]  Chanyal, B.C. (2020) International Journal of Geometric Methods in Modern Physics, 17, Article ID: 2050018.
https://doi.org/10.1142/S0219887820500188
[29]  Deavours, C.A. (1973) The American Mathematical Monthly, 80, 995-1008.
https://doi.org/10.1080/00029890.1973.11993432
[30]  Jack, P.M. (2003) Physical Space as a Quaternion Structure.
[31]  Dunning-Davies, J. and Norman, R.L. (2020) Journal of Modern Physics, 11, 1361-1371.
https://doi.org/10.4236/jmp.2020.119085
[32]  Aharonov, Y. and Bohm, D. (1959) Physical Review, 115, 485-491.
https://doi.org/10.1103/PhysRev.115.485
[33]  Lorentz, H.A. (1904) Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.
[34]  Lorentz, H.A. (1904) Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831.
[35]  Lienard, A. (1898) L’éclairage électrique, 16, 5-14, 53-59, 106-112.
[36]  Wiechert, E. (1901) Annalen der Physik, 309, 667-689.
https://doi.org/10.1002/andp.19013090403
[37]  Jefimenko, O.D. (1992) American Journal of Physics, 60, 899-902.
https://doi.org/10.1119/1.17010
[38]  Fueter, R. (1934) Commentarii Mathematici Helvetici, 7, 307-330.
https://doi.org/10.1007/BF01292723
[39]  Alayon-Solarz, D. (2004) On Some Modifications of the Fueter Operator.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133