An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]2 (cod = 1,5-cyclooctadiene) (3) as a metal catalyst precursor. This reaction was driven by chiral hydroxyamide-functionalized azolium salt 2. The catalytic ESR reaction could be performed under benchtop conditions at room temperature. Treatment of 2 with 3 in THF yielded the monodentate IrCl(NHC)(cod) (NHC = N-heterocyclic carbene) complex 4 in 93% yield, herein the anionic methoxy ligand of 3 serves as an internal base that deprotonates the azolium ring of 2. The well-defined Ir complex 4 catalyzed the ESR reaction of propiophenone (6) with (EtO)2MeSiH using the pre-mixing reaction procedure. Based on this success, the catalytic ESR reaction was designed and implemented using an in situ-generated NHC/Ir catalyst derived from 2 and 3. Thus, a wide variety of aryl ketones could be reduced to the corresponding optically active alcohols in moderate to excellent stereoselectivities at room temperature without temperature control. Since the high catalytic activity of 3 was observed, we next evaluated several other transition metal catalyst precursors for the catalytic ESR reaction under the influence of 2. This evaluation revealed that Ir(acac)(cod) (acac = acetylacetonate) (28) and [IrCl(cod)]2 (5) can be successfully used as metal catalyst precursors in the ESR reaction.
References
[1]
Wang, H.M.J. and Lin, I.J.B. (1998) Facile Synthesis of Silver(I)-Carbene Complexes. Useful Carbene Transfer Agents. Organometallics, 17, 972-975. https://doi.org/10.1021/om9709704
[2]
Garrison, J.C. and Youngs, W.J. (2005) Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application. Chemical Reviews, 105, 3978-4008. https://doi.org/10.1021/cr050004s
[3]
Chianese, A.R., Li, X., Janzen, M.C., Faller, J.W. and Crabtree, R.H. (2003) Rhodium and Iridium Complexes of N-Heterocyclic Carbenes via Transmetalation: Structure and Dynamics. Organometallics, 22, 1663-1667. https://doi.org/10.1021/om021029+
[4]
Mas-Marza, E., Poyatos, M., Sanaú, M. and Peris, E. (2004) Carbene Complexes of Rhodium and Iridium from Tripodal N-Heterocyclic Carbene Ligands: Synthesis and Catalytic Properties. Inorganic Chemistry, 43, 2213-2219. https://doi.org/10.1021/ic035317p
[5]
Wang, C.-Y., Fu, C.-F., Liu, Y.-H., Peng, S.-M. and Liu, S.-T. (2007) Synthesis of Iridium Pyridinyl N-Heterocyclic Carbene Complexes and Their Catalytic Activities on Reduction of Nitroarenes. Inorganic Chemistry, 46, 5779-5786. https://doi.org/10.1021/ic070330l
[6]
Zinner, S.C., Rentzsch, C.F., Herdtweck, E., Herrmann, W.A. and KüHn, F.E. (2009) N-Heterocyclic Carbenes of Iridium(I): Ligand Effects on the Catalytic Activity in Transfer Hydrogenation. Dalton Transactions, 35, 7055-7062. https://doi.org/10.1039/b906855d
[7]
Zhao, Q., Meng, G., Nolan, S.P. and Szostak, M. (2020) N-Heterocyclic Carbene Complexes in C-H Activation Reactions. Chemical Reviews, 120, 1981-2048. https://doi.org/10.1021/acs.chemrev.9b00634
[8]
Sipos, G. and Dorta, R. (2018) Iridium Complexes with Monodentate N-Heterocyclic Carbene Ligands. Coordination Chemistry Reviews, 375, 13-68. https://doi.org/10.1016/j.ccr.2017.10.019
[9]
Van Vuuren, E., Malan, F.P. and Landman, M. (2021) Multidentate NHC Complexes of Group IX Metals Featuring Carbon-Based Tethers: Synthesis and Applications. Coordination Chemistry Reviews, 430, Article ID: 213731. https://doi.org/10.1016/j.ccr.2020.213731
[10]
Herrmann, W.A., Baskakov, D., Herdtweck, E., Hoffmann, S.D., Bunlaksananusorn, T., Rampf, F. and Rodefeld, L. (2006) Chiral N-Heterocyclic Carbene Ligands Derived from 2,2’-Bipiperidine and Partially Reduced Biisoquinoline: Rhodium and Iridium Complexes in Asymmetric Catalysis. Organometallics, 25, 2449-2456. https://doi.org/10.1021/om060098b
[11]
Yoshida, K., Kamimura, T., Kuwabara, H. and Yanagisawa, A. (2015) Chiral Bicyclic NHC/Ir Complexes for Catalytic Asymmetric Transfer Hydrogenation of Ketones. Chemical Communications, 51, 15442-15445. https://doi.org/10.1039/C5CC05318H
[12]
Mukherje, N., Mondal, B., Saha, T.N. and Maity, R. (2022) Palladium, Iridium, and Rhodium Complexes Bearing Chiral N-Heterocyclic Carbene Ligands Applied in Asymmetric Catalysis. Applied Organometallic Chemistry, e6794. https://doi.org/10.1002/aoc.6794
[13]
Kawabata, S., Tokura, H., Chiyojima, H., Okamoto, M. and Sakaguchi, S. (2012) Asymmetric Hydrosilane Reduction of Ketones Catalyzed by an Iridium Complex Bearing a Hydroxyamide-Functionalized NHC Ligand. Advanced Synthesis & Catalysis, 354, 807-812. https://doi.org/10.1002/adsc.201100897
[14]
Shinohara, K., Kawabata, S., Nakamura, H., Manabe, Y. and Sakaguchi, S. (2014) Enantioselective Hydrosilylation of Ketones Catalyzed by a Readily Accessible N-Heterocyclic Carbene-Ir Complex at Room Temperature. European Journal of Organic Chemistry, 2014, 5532-5539. https://doi.org/10.1002/ejoc.201402279
[15]
Teramoto, H. and Sakaguchi, S. (2018) Enantioselective Catalytic Hydrosilylation of Propiophenone with a Simple Combination of a Cationic Iridium Complex and a Chiral Azolium Salt. Journal of Organometallic Chemistry, 875, 52-58. https://doi.org/10.1016/j.jorganchem.2018.09.001
[16]
Uson, R., Oro, L.A., Cabeza, J.A., Bryndza, H.E. and Stepro, M.P. (1985) Dinuclear Methoxy, Cyclooctadiene, and Barrelene Complexes of Rhodium(I) and Iridium(I). In: Kirschner, S., Ed., Inorganic Syntheses 23, Wiley-VCH, Weinheim, 126-130. https://doi.org/10.1002/9780470132548.ch25
[17]
JiméNez, M.V., FernáNdez-Tornos, J., PéRez-Torrente, J.J., Modrego, F.J., Winterle, S., Cunchillos, C., Lahoz, F.J. and Oro, L.A. (2011) Iridium(I) Complexes with Hemilabile N-Heterocyclic Carbenes: Efficient and Versatile Transfer Hydrogenation Catalysts. Organometallics, 30, 5493-5508. https://doi.org/10.1021/om200747k
[18]
Finn, M., Ridenour, J.A., Heltzel, J., Cahill, C. and Voutchkova-Kostal, A. (2018) Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics, 37, 1400-1409. https://doi.org/10.1021/acs.organomet.8b00081
[19]
Karataş, M.O., Alıcı, B., Passarelli, V., Özdemir, I., PÉRez-Torrent, J.J. and Castarlenas, R. (2021) Iridium(I) Complexes Bearing Hemilabile Coumarin Functionalised N-Heterocyclic Carbene Ligands with Application as Alkyne Hydrosilylation Catalysts. Dalton Transactions, 50, 11206-11215. https://doi.org/10.1039/D1DT01946E
[20]
Matsuki, T., Teramoto, H., Ichihara, R., Inui, K. and Sakaguchi, S. (2022) Asymmetric Silane Reduction of Ketones and β-Keto Esters Catalyzed by a Chiral Azolium/Iridium System in the Presence of a Base in Methanol at Room Temperature. Results in Chemistry, 4, Article ID: 100364. https://doi.org/10.1016/j.rechem.2022.100364
[21]
Enders, D. and Gielen, H. (2001) Synthesis of Chiral Triazolinylidene and Imidazolinylidene Transition Metal Complexes and First Application in Asymmetric Catalysis. Journal of Organometallic Chemistry, 617, 70-80. https://doi.org/10.1016/S0022-328X(00)00600-8
[22]
Enders, D., Gielen, H., Runsink, J., Breuer, K., Brode, S. and Boehn, K. (1998) Diastereoselective Synthesis of Chiral (Triazolinylidene)rhodium Complexes Containing an Axis of Chirality. European Journal of Inorganic Chemistry, 1998, 913-919. https://doi.org/10.1002/(SICI)1099-0682(199807)1998:7<913::AID-EJIC913>3.0.CO;2-1
[23]
Zanardi, A., Peris, E. and Mata, J.A. (2008) Alkenyl-Functionalized NHC Iridium-Based Catalysts for Hydrosilylation. New Journal of Chemistry, 32, 120-126. https://doi.org/10.1039/B707280E
[24]
GüLcemal, S., Gökçe, A.G. and Çetinkaya, B. (2013) Iridium(I) N-Heterocyclic Carbene Complexes of Benzimidazol-2-Ylidene: Effect of Electron Donating Groups on the Catalytic Transfer Hydrogenation Reaction. Dalton Transactions, 42, 7305-7311. https://doi.org/10.1039/C2DT32482B
[25]
Mullick, A.B., Jeletic, A.S., Powers, A.R., Ghiviriga, I., Abboud, I.K.A. and Veige, A.S. (2013) Convenient in Situ Generation of a Chiral Bis-N-Heterocyclic Carbene Palladium Catalyst and Its Application in Enantioselective Synthesis. Polyhedron, 52, 810-819. https://doi.org/10.1016/j.poly.2012.07.046
[26]
Riener, K., Bitzer, M.J., PoThig, A., Raba, A., Cokoja, M., Herrmann, W.A. and KuHn, F.E. (2014) On the Concept of Hemilability: Insights into a Donor-Functionalized Iridium(I) NHC Motif and Its Impact on Reactivity. Inorganic Chemistry, 53, 12767-12777. https://doi.org/10.1021/ic5016324
[27]
Jeletic, M.S., Jan, M.T., Ghiviriga, I., Abboud, K.A. and Veige, A.S. (2009) New Iridium and Rhodium Chiral Di-N-Heterocyclic Carbene (NHC) Complexes and Their Application in Enantioselective Catalysis. Dalton Transactions, No. 15, 2764-2776. https://doi.org/10.1039/b819524b
[28]
Ortega-Lepe, I., Rossin, A., Sánchez, P., Santos, L.L., Rendón, N., Álvarez, E., López-Serrano, J. and Suárez, A. (2021) Ammonia-Borane Dehydrogenation Catalyzed by Dual-Mode Proton-Responsive Ir-CNNH Complexes. Inorganic Chemistry, 60, 18490-18502. https://doi.org/10.1021/acs.inorgchem.1c03056
[29]
Olmstead, W.N., Margolin, Z. and Bordwel, F.G. (1980) Acidities of Water and Simple Alcohols in Dimethyl Sulfoxide Solution. Journal of Organic Chemistry, 45, 3295-3299. https://doi.org/10.1021/jo01304a032
[30]
Olmstead, W.N. and Bordwel, F.G. (1980) Ion-Pair Association Constants in Dimethyl Sulfoxide. Journal of Organic Chemistry, 45, 3299-3305. https://doi.org/10.1021/jo01304a033
[31]
Bordwel, F.G. (1988) Equilibrium Acidities in Dimethyl Sulfoxide Solution. Accounts of Chemical Research, 21, 456-463. https://doi.org/10.1021/ar00156a004
[32]
Duan, W.-L., Shi, M. and Rong, G.-B. (2003) Synthesis of Novel Axially Chiral Rh-NHC Complexes Derived from BINAM and Application in the Enantioselective Hydrosilylation of Methyl Ketones. Chemical Communications, No. 23, 2916-2917. https://doi.org/10.1039/B309185F
[33]
Xu, Q., Gu, X., Liu, S., Dou, Q. and Shi, M. (2007) The Use of Chiral BINAM NHC-Rh(III) Complexes in Enantioselective Hydrosilylation of 3-Oxo-3-Arylpropionic Acid Methyl or Ethyl Esters. Journal of Organic Chemistry, 72, 2240-2242. https://doi.org/10.1021/jo062453d
[34]
Gade, L.H., CéSar, V. and Bellemin-Laponnaz, S. (2004) A Modular Assembly of Chiral Oxazolinylcarbene-Rhodium Complexes: Efficient Phosphane-Free Catalysts for the Asymmetric Hydrosilylation of Dialkyl Ketones. Angewandte Chemie International Edition, 43, 1014-1017. https://doi.org/10.1002/anie.200353133
[35]
Albright, A. and Gawley, R.E. (2011) Application of a C2-Symmetric Copper Carbenoid in the Enantioselective Hydrosilylation of Dialkyl and Aryl-Alkyl Ketones. Journal of the American Chemical Society, 133, 19680-19683. https://doi.org/10.1021/ja209187a
Hafedh, N., Favereau, L., Caytan, E., Roisnel, T., Jean, M., Vanthuyne, N., Aloui, F. and Crassous, J. (2019) Synthesis and Chiroptical Properties of Organometallic Complexes of Helicenic N-Heterocyclic Carbenes. Chirality, 31, 1005-1013. https://doi.org/10.1002/chir.23143