|
基于大环分子主–客体相互作用的超分子聚合物网络研究进展
|
Abstract:
高分子链间通过非共价交联作用能够形成超分子聚合物网络(SPNs),这类材料具有动态可逆性、刺激响应性、自愈性和形状记忆等优点,目前已在高分子科学、超分子化学、自适应材料和生物医学材料等诸多领域取得广泛应用。基于大环主体的主客体相互作用是构筑超分子聚合物网络的一类重要非共价驱动力,本文按照大环主体的种类介绍了不同类型主–客体作用交联的超分子聚合物网络的构筑策略,以及它们的刺激响应组装行为和功能调控相关研究进展。同时,讨论了该领域面临的问题和挑战,为发展其他新颖超分子聚合物网络材料提供参考。
The noncovalent crosslinking of polymer chains can lead to the formation of supramolecular poly-mer networks (SPNs) featuring with unique dynamic, stimuli-responsive, self-healing and shape memory etc, which have enabled widespread applications in polymer science, supramolecular chemistry, adaptive materials as well as biomedical materials. The macrocyclic host based host-guest interactions are an important class of non covalent driving force for constructing SPNs. This review mainly summarize the representative construction strategies for SPNs crosslinked by different host-guest interactions according to the types of macrocyclic hosts, as well as the research progress related to their stimuli-responsive assembly behavior and functional regulation. Mean-while, the challenges and perspectives will be discussed to provide valuable references for the de-velopment of other novel SPNs materials.
[1] | Brunsveld, L., Folmer, B.J.B., Meijer, E.W. and Sijbesma, R.P. (2001) Supramolecular Polymers. Chemical Reviews, 101, 4071-4098. https://doi.org/10.1021/cr990125q |
[2] | De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P. and Meijer, E.W. (2009) Supramolecular Polymerization. Chemical Reviews, 109, 5687-5754. https://doi.org/10.1021/cr900181u |
[3] | Fox, J.D. and Rowan, S.J. (2009) Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules, 42, 6823-6835. https://doi.org/10.1021/ma901144t |
[4] | Seiffert, S. and Sprakel, J. (2012) Physical Chemistry of Supramolecular Polymer Networks. Chemical Society Reviews, 41, 909-930. https://doi.org/10.1039/C1CS15191F |
[5] | Besenius, P. and Cormack, P.A.G. (2012) Supramolecular Chemistry in Poly-mer Networks. Wiley, Hoboken.
https://doi.org/10.1002/9780470661345.smc140 |
[6] | Voorhaar, L. and Hoogenboom, R. (2016) Supramolecular Polymer Networks: Hydrogels and Bulk Materials. Chemical Society Reviews, 45, 4013-4031. https://doi.org/10.1039/C6CS00130K |
[7] | Wang, R., Sing, M.K., Avery, R.K., Souza, B.S., Kim, M. and Olsen, B.D. (2016) Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials. Accounts of Chemical Research, 49, 2786-2795.
https://doi.org/10.1021/acs.accounts.6b00454 |
[8] | Herbst, F., Dohler, D., Michael, P. and Binder, W.H. (2013) Self-Healing Polymers via Supramolecular Forces. Macromolecular Rapid Communications, 34, 203-220. https://doi.org/10.1002/marc.201200675 |
[9] | An, S.Y., Arunbabu, D., Noh, S.M., Song, Y.K. and Oh, J.K. (2015) Re-cent Strategies to Develop Self-Healable Crosslinked Polymeric Networks. Chemical Communications, 51, 13058-13070. https://doi.org/10.1039/C5CC04531B |
[10] | Zhang, G., Zhao, Q., Zou, W., Luo, Y. and Xie, T. (2016) Unusual Aspects of Supramolecular Networks: Plasticity to Elasticity, Ultrasoft Shape Memory, and Dynamic Mechanical Properties. Advanced Functional Materials, 26, 931-937.
https://doi.org/10.1002/adfm.201504028 |
[11] | Jiang, Z.C., Xiao, Y.Y., Kang, Y., Pan, M., Li, B.J. and Zhang, S. (2017) Shape Memory Polymers Based on Supramolecular Interactions. ACS Applied Materials & Interfaces, 9, 20276-20293. https://doi.org/10.1021/acsami.7b03624 |
[12] | Wu, X., Wang, J., Huang, J. and Yang, S. (2019) Robust, Stretchable, and Self Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Ap-plied Materials & Interfaces, 11, 7387-7396. https://doi.org/10.1021/acsami.8b20303 |
[13] | Liao, X., Chen, G. and Jiang, M. (2013) Hydrogels Locked by Molecular Recognition Aiming at Responsiveness and Functionality. Polymer Chemistry, 4, 1733-1745. https://doi.org/10.1039/C2PY20693E |
[14] | Hart, L.R., Harries, J.L., Greenland, B.W., Colquhoun, H.M. and Hayes, W. (2013) Healable Supramolecular Polymers. Polymer Chemistry, 4, 4860-4870. https://doi.org/10.1039/c3py00081h |
[15] | Kaitz, J.A., Possanza, C.M., Song, Y., Diesendruck, C.E., Spiering, A.J.H., Meijer, E.W. and Moore, J.S. (2014) Depolymerizable, Adaptive Supramolecular Polymer Nanoparticles and Networks. Poly-mer Chemistry, 5, 3788-3794.
https://doi.org/10.1039/C3PY01690K |
[16] | Saboktakin, M.R. and Tabatabaei, R.M. (2015) Supramolecular Hydrogelsas Drug Delivery Systems. International Journal of Biological Macromolecules, 75, 426-436. https://doi.org/10.1016/j.ijbiomac.2015.02.006 |
[17] | Callari, M., Thomas, D.S. and Stenzel, M.H. (2016) The Dual-Role of Pt(iv) Complexes as Active Drug and Crosslinker for Micelles Based on β-Cyclodextrin Grafted Polymer. Journal of Materials Chemistry B, 4, 2114-2123.
https://doi.org/10.1039/C5TB02429C |
[18] | Heinzmann, C., Weder, C. and de Espinosa, L.M. (2016) Supramolecular Polymer Adhesives: Advanced Materials Inspired by Nature. Chemical Society Reviews, 45, 342-358. https://doi.org/10.1039/C5CS00477B |
[19] | Amabilino, D.B., Smith, D.K. and Steed, J.W. (2017) Supramolecular Materi-als. Chemical Society Reviews, 46, 2404-2420. https://doi.org/10.1039/C7CS00163K |
[20] | Lu, W., Le, X., Zhang, J., Huang, Y. and Chen, T. (2017) Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Poly-mers and Supramolecular Chemistry. Chemical Society Reviews, 46, 1284-1294.
https://doi.org/10.1039/C6CS00754F |
[21] | Webber, M.J. and Langer, R. (2017) Drug Delivery by Supramolecular Design. Chemical Society Reviews, 46, 6600-6620. https://doi.org/10.1039/C7CS00391A |
[22] | Lowenberg, C., Balk, M., Wischke, C., Behl, M. and Lendlein, A. (2017) Shape-Memory Hydrogels: Evolution of Structural Principles to Enable Shape Switching of Hydrophilic Polymer Networks. Accounts of Chemical Research, 50, 723-732. https://doi.org/10.1021/acs.accounts.6b00584 |
[23] | Huynh, T.P., Sonar, P. and Haick, H. (2017) Advanced Materials for Use in Soft Self-Healing Devices. Advanced Materials, 29, Article ID: 1604973. https://doi.org/10.1002/adma.201604973 |
[24] | Zhao, R., Zhao, T., Jiang, X., Liu, X., Shi, D., Liu, C., Yang, S. and Chen, E.-Q. (2017) Thermoplastic High Strain Multishape Memory Polymer: Side-Chain Polynorbornene with Columnar Liquid Crystalline Phase. Advanced Materials, 29, Article ID: 1605908. https://doi.org/10.1002/adma.201605908 |
[25] | Huang, G., Li, F., Zhao, X., Ma, Y., Li, Y., Lin, M., Jin, G., Lu, T.J., Genin, G.M. and Xu, F. (2017) Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 117, 12764-12850. https://doi.org/10.1021/acs.chemrev.7b00094 |
[26] | Yan, X., Liu, Z., Zhang, Q., Lopez, J., Wang, H., Wu, H.C., Niu, S., Yan, H., Wang, S., Lei, T., Li, J., Qi, D., Huang, P., Huang, J., Zhang, Y., Wang, Y., Li, G., Tok, J. B., Chen, X. and Bao, Z. (2018) Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 140, 5280-5289. https://doi.org/10.1021/jacs.8b01682 |
[27] | Dahlke, J., Tepper, R., Geitner, R., Zechel, S., Vitz, J., Kampes, R., Popp, J., Hager, M.D. and Schubert, U.S. (2018) A Healing Ionomer Crosslinked by a Bis-Bidentate Halogen Bond Linker: A Route to Hard and Healable Coatings. Polymer Chemistry, 9, 2193-2197. https://doi.org/10.1039/C8PY00149A |
[28] | Zhou, B., Jo, Y.H., Wang, R., He, D., Zhou, X., Xie, X. and Xue, Z. (2019) Self-Healing Composite Polymer Electrolyte Formed via Su-pramolecular Networks for High-Performance Lithium-Ion Batteries. Journal of Materials Chemistry A, 7, 10354-10362. https://doi.org/10.1039/C9TA01214A |
[29] | Scha?fer, S. and Kickelbick, G. (2018) Double Reversible Networks: Im-provement of Self-Healing in Hybrid Materials via Combination of Diels-Alder Cross-Linking and Hydrogen Bonds. Macro-molecules, 51, 6099-6110.
https://doi.org/10.1021/acs.macromol.8b00601 |
[30] | Hua, Z., Wilks, T.R., Keogh, R., Herwig, G., Stavros, V.G. and O’Reilly, R.K. (2018) Entrapment and Rigidification of Adenine by a Photo Cross-Linked Thymine Network Leads to Fluores-cent Polymer Nanoparticles. Chemistry of Materials, 30, 1408-1416. https://doi.org/10.1021/acs.chemmater.7b05206 |
[31] | Chang, X., Geng, Y., Cao, H., Zhou, J., Tian, Y., Shan, G., Bao, Y., Wu, Z.L. and Pan, P. (2018) Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bond-ing and Hydrophobic Interactions. Macromolecular Rapid Communications, 39, e1700806. https://doi.org/10.1002/marc.201700806 |
[32] | Wang, Y.J., Zhang, X.N., Song, Y., Zhao, Y., Chen, L., Su, F., Li, L., Wu, Z.L. and Zheng, Q. (2019) Ultrastiff and Tough Supramolecular Hydrogels with a Dense and Robust Hydrogen Bond Network. Chemistry of Materials, 31, 1430-1440. https://doi.org/10.1021/acs.chemmater.8b05262 |
[33] | McKee, J.R., Appel, E.A., Seitsonen, J., Kontturi, E., Scherman, O.A. and Ikkala, O. (2014) Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Three-Component Recognition with Reinforcing Cellulose Nanorods. Advanced Func-tional Materials, 24, 2706-2713.
https://doi.org/10.1002/adfm.201303699 |
[34] | Ma, X. and Zhao, Y. (2015) Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. Chemical Reviews, 115, 7794-7839. https://doi.org/10.1021/cr500392w |
[35] | Yang, X., Yu, H., Wang, L., Tong, R., Akram, M., Chen, Y. and Zhai, X. (2015) Self-Healing Polymer Materials Constructed by Macrocycle-Based Host-Guest Interactions. Soft Matter, 11, 1242-1252.
https://doi.org/10.1039/C4SM02372B |
[36] | Yu, Z., Zhang, J., Coulston, R.J., Parker, R.M., Biedermann, F., Liu, X., Scherman, O.A. and Abell, C. (2015) Supramolecular Hydrogel Microcapsules via Cucurbit[8]uril Host-Guest Interactions with Triggered and UV-Controlled Molecular Permeability. Chemical Science, 6, 4929-4933. https://doi.org/10.1039/C5SC01440A |
[37] | Fu, T., Li, Z., Zhang, Z., Zhang, X. and Wang, F. (2017) Supramolecular Cross-Linking and Gelation of Conjugated Polycarbazoles via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexa-tion. Macromolecules, 50, 7517-7525.
https://doi.org/10.1021/acs.macromol.7b01149 |
[38] | Xiao, T., Xu, L., Zhou, L., Sun, X.-Q., Lin, C. and Wang, L. (2019) DynamicHydrogels Mediated by Macrocyclic Host-Guest Interactions. Journal of Materials Chemistry B, 7, 1526-1540. https://doi.org/10.1039/C8TB02339E |
[39] | Bentz, K.C. and Cohen, S.M. (2018) Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angewandte Chemie International Edition, 57, 14992-15001. https://doi.org/10.1002/anie.201806912 |
[40] | Liu, H., Peng, H., Xin, Y. and Zhang, J. (2019) Metal-Organic Frameworks: A Universal Strategy towards Super-Elastic Hydrogels. Polymer Chemistry, 10, 2263-2272. https://doi.org/10.1039/C9PY00085B |
[41] | Hart, L.R., Hunter, J.H., Nguyen, N.A., Harries, J.L., Greenland, B.W., Mac-kay, M.E., Colquhoun, H.M. and Hayes, W. (2014) Multivalency in Healable Supramolecular Polymers: The Effect of Supra-molecular Cross-Link Density on the Mechanical Properties and Healing of Non-Covalent Polymer Networks. Polymer Chem-istry, 5, 3680-3688.
https://doi.org/10.1039/C4PY00292J |
[42] | Hayes, W. and Greenland, B.W. (2015) Donor-Acceptor π-π Stacking Interac-tions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks. In: Seiffert, S., Ed., Supramolecular Polymer Networks and Gels, Springer International Publishing, Cham, 143-166. |
[43] | Wang, H., Ji, X., Li, Y., Li, Z., Tang, G. and Huang, F. (2018) An ATP/ATPase Responsive Supramolecular Fluorescent Hydrogel Constructed via Electrostatic Interac-tions between Poly(Sodium p-Styrenesulfonate) and a Tetraphenylethene Derivative. Journal of Materials Chemistry B, 6, 2728-2733. https://doi.org/10.1039/C8TB00366A |
[44] | Tepper, R., Bode, S., Geitner, R., Jager, M., Gorls, H., Vitz, J., Dietzek, B., Schmitt, M., Popp, J., Hager, M.D. and Schubert, U.S. (2017) Polymeric Halogen-Bond-Based Donor Systems Showing Self-Healing Behavior in Thin Films. Angewandte Chemie International Edition, 56, 4047-4051. https://doi.org/10.1002/anie.201610406 |
[45] | Pedersen, C.J. (1988) The Discovery of Crown Ethers. Science, 241, 536-540.
https://doi.org/10.1126/science.241.4865.536 |
[46] | Price, T.L. and Gibson, H.W. (2011) Supramolecular Polymer Chemis-try. Wiley-VCH, Amsterdam. |
[47] | Ge, Z., Hu, J., Huang, F. and Liu, S. (2009) Responsive Supramolecular Gels Constructed by Crown Ether Based Molecular Recognition. Angewandte Chemie International Edition, 48, 1798-1802.
https://doi.org/10.1002/anie.200805712 |
[48] | Ji, X., Yao, Y., Li, J., Yan, X. and Huang, F. (2013) A Supramolecular Cross Linked Conjugated Polymer Network for Multiple Fluorescent Sensing. Journal of the American Chemical Society, 135, 74-77.
https://doi.org/10.1021/ja3108559 |
[49] | Liu, Y.H., Wan, J.J., Zhao, X.Y., et al. (2023) Highly Strong and Tough Supra-molecular Polymer Networks Enabled by Cryptand-Based Host-Guest Recognition. Angewandte Chemie International Edition, 62, e202302370.
https://doi.org/10.1002/anie.202302370 |
[50] | Yasen, W., Dong, R., Zhou, L., Wu, J., Cao, C., Aini, A. and Zhu, X. (2017) Synthesis of a Cationic Supramolecular Block Copolymer with Covalent and Noncovalent Polymer Blocks for Gene Delivery. ACS Applied Materials & Interfaces, 9, 9006-9014. https://doi.org/10.1021/acsami.6b15919 |
[51] | Minato, K., Mayumi, K., Maeda, R., Kato, K., Yokoyama, H. and Ito, K. (2017) Mechanical Properties of Supramolecular Elastomers Prepared from Polymer-Grafted Polyrotaxane. Polymer, 128, 386-391.
https://doi.org/10.1016/j.polymer.2017.02.090 |
[52] | Takashima, Y., Hayashi, Y., Osaki, M., Kaneko, F., Yamaguchi, H. and Harada, A. (2018) A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 51, 4688-4693. https://doi.org/10.1021/acs.macromol.8b00939 |
[53] | Hou, J.B., Zhang, X.Q., Wu, D., Feng, J.F., Ke, D., Li, B.J. and Zhang, S. (2019) Tough Self-Healing Elastomers Based on the Host-Guest Inter-action of Polycyclodextrin. ACS Applied Materials & Interfaces, 11, 12105-12113.
https://doi.org/10.1021/acsami.9b00626 |
[54] | Shi, W.W., Zhang, D.Q., Han, L.Y., et al. (2023) Supramolecular Chi-tin-Based Hydrogels with Self-Adapting and Fast-Degradation Properties for Enhancing Wound Healing. Carbohydrate Poly-mers, 323, Article ID: 121374.
https://doi.org/10.1016/j.carbpol.2023.121374 |
[55] | Zhu, W., Gou, P. and Shen, Z. (2008) Applications of Calixarenes in Polymer Synthesis. Macromolecular Symposia, 261, 74-84. https://doi.org/10.1002/masy.200850110 |
[56] | Villari, V., Gattuso, G., Notti, A., Pappalardo, A. and Micali, N. (2012) Self Assembled Calixarene Derivative as a Supramolecular Poly-mer. The Journal of Physical Chemistry B, 116, 5537-5541. https://doi.org/10.1021/jp300848n |
[57] | Pappalardo, A., Bal-listreri, F.P., Destri, G.L., Mineo, P.G., Tomaselli, G.A., Toscano, R.M. and Trusso Sfrazzetto, G. (2012) Supramolecular Polymer Networks Based on Calix[5]arene Tethered Poly(p-phenyleneethynylene). Macromolecules, 45, 7549-7556. https://doi.org/10.1021/ma3015239 |
[58] | Wang, K.P., Chen, Y. and Liu, Y. (2015) A Polycation-Induced Secondary As-sembly of Amphiphilic Calixarene and Its Multi-Stimuli Responsive Gelation Behavior. Chemical Communications, 51, 1647-1649.
https://doi.org/10.1039/C4CC08721F |
[59] | Marquez, C., Hudgins, R.R. and Nau, W.M. (2004) Mechanism of Host-Guest Complexation by Cucurbituril. Journal of the American Chemical Society, 126, 5806-5816. https://doi.org/10.1021/ja0319846 |
[60] | Angelos, S., Yang, Y.W., Patel, K., Stoddart, J.F. and Zink, J.I. (2008) pH Re-sponsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angewandte Chemie International Edition, 47, 2222-2226.
https://doi.org/10.1002/anie.200705211 |
[61] | Li, C., Rowland, M.J., Shao, Y., Cao, T., Chen, C., Jia, H., Zhou, X., Yang, Z., Scherman, O.A. and Liu, D. (2015) Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host-Guest Supramolecular Systems. Advanced Materials, 27, 3298-3304. https://doi.org/10.1002/adma.201501102 |
[62] | Wu, Y., Shah, D.U., Wang, B., Liu, J., Ren, X., Ramage, M.H. and Scher-man, O.A. (2018) Biomimetic Supramolecular Fibers Exhibit Water Induced Supercontraction. Advanced Materials, 30, e1707169.
https://doi.org/10.1002/adma.201707169 |
[63] | Wang, P., Xing, H., Xia, D. and Ji, X. (2015) A Novel Supramolecular Polymer Gel Constructed by Crosslinking Pillar[5]arene-Based Supramolecular Polymers through Metal-Ligand Interactions. Chemical Communications, 51, 17431-17434. https://doi.org/10.1039/C5CC07252B |
[64] | Wang, Y., Ping, G. and Li, C. (2016) Efficient Complexation between Pillar[5]arenes and Neutral Guests: From Host-Guest Chemistry to Functional Materials. Chemical Communications, 52, 9858-9872.
https://doi.org/10.1039/C6CC03999E |
[65] | Wang, Y., Sun, C.-L., Niu, L.-Y., Wu, L.Z., Tung, C.-H., Chen, Y.-Z. and Yang, Q.-Z. (2017) Photoresponsive AA/BB Supramolecular Polymers Comprising Stiff-Stilbene Based Guests and Bispil-lar[5]arenes. Polymer Chemistry, 8, 3596-3602. https://doi.org/10.1039/C7PY00326A |
[66] | Chang, J., Zhao, Q., Kang, L., Li, H., Xie, M. and Liao, X. (2016) Multiresponsive Supramolecular Gel Based on Pillararene-Containing Polymers. Macro-molecules, 49, 2814-2820. https://doi.org/10.1021/acs.macromol.6b00270 |
[67] | Boominathan, M., Kiruthika, J. and Aru-nachalam, M. (2019) Construction of Anion-Responsive Crosslinked Polypseudorotaxane Based on Molecular Recognition of Pillar[5]arene. Journal of Polymer Science, Part A: Polymer Chemistry, 57, 1508-1515. https://doi.org/10.1002/pola.29413 |
[68] | Yang, H., Duan, Z.Z., Liu, F.B., Zhao, Y.Y. and Liu, S. (2023) Cucur-bit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Letters, 12, 295-301.
https://doi.org/10.1021/acsmacrolett.2c00763 |