All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Forecasting Volatility Based on a New Combined HAR-Type Model with Long Memory and Switching Regime: Empirical Evidence from Equity Realized Volatility

DOI: 10.4236/jmf.2024.141005, PP. 103-123

Keywords: Long Memory, Realized Volatility, Autoregressive Model, Forecast, Equity Market

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a new combined model accounting for short memory, long memory, heterogeneity, and switching regime to model realized volatility and forecast future volatility. We apply daily realized volatility series of SPX to estimate volatility model parameters of in-sample and full-sample, and forecast future daily out-of-sample volatility. The model estimated results show the significant impact of long memory, switching regime, heterogeneity and jump component. The results of out-of-sample volatility forecast evaluation indicate that MS-LM-HAR outperforms the other fifteen models based on the evaluating method of loss function and MCS. Our findings suggest that incorporating the property of long memory and switching regime into HAR-type models can significantly increase the forecast performance of realized volatility models.

References

[1]  Andersen, T.G. and Bollerslev, T. (1998) Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Economic Review, 39, 885-905. https://doi.org/10.2307/2527343
[2]  Andersen, T.G., Bollerslev, T. and Meddahi, N. (2004) Analytical Evaluation of Volatility Forecasts. International Economic Review, 45, 1079-1110.
https://doi.org/10.1111/j.0020-6598.2004.00298.x
[3]  Hosking, J.R.M. (1981) Fractional Differencing. Biometrika, 68, 165-176.
https://doi.org/10.2307/2335817
[4]  Brodsky, J. and Hurvich, C.M. (1999) Multi-Step Forecasting for Long-Memory Processes. Journal of Forecasting, 18, 59-75.
https://doi.org/10.1002/(SICI)1099-131X(199901)18:1<59::AID-FOR711>3.0.CO;2-V
[5]  Wang, C.S.-H., Bauwens, L. and Hsiao, C. (2013) Forecasting a Long Memory Process Subject to Structural Breaks. Journal of Econometrics, 177, 171-184.
https://doi.org/10.1016/j.jeconom.2013.04.006
[6]  Zhou, W., Pan, J. and Wu, X. (2019) Forecasting the Realized Volatility of CSI 300. Physica A: Statistical Mechanics and Its Applications, 531, Article ID: 121799.
https://doi.org/10.1016/j.physa.2019.121799
[7]  Hassler, U. and Pohle, M.-O. (2023) Forecasting under Long Memory. Journal of Financial Econometrics, 21, 742-778. https://doi.org/10.1093/jjfinec/nbab017
[8]  Shi, Y. (2015) Can We Distinguish Regime Switching from Long Memory? A Simulation Evidence. Applied Economics Letters, 22, 318-323.
https://doi.org/10.1080/13504851.2014.941526
[9]  Corsi, F. (2009) A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7, 174-196.
https://doi.org/10.1093/jjfinec/nbp001
[10]  Alfeus, M. and Nikitopoulos, C.S. (2022) Forecasting Volatility in Commodity Markets with Long-Memory Models. Journal of Commodity Markets, 28, Article ID: 100248. https://doi.org/10.1016/j.jcomm.2022.100248
[11]  Wang, J., Ma, F., Liang, C. and Chen, Z. (2022) Volatility Forecasting Revisited Using Markov-Switching with Time-Varying Probability Transition. International Journal of Finance & Economics, 27, 1387-1400. https://doi.org/10.1002/ijfe.2221
[12]  Alizadeh, A.H., Huang, C.-Y. and Marsh, I.W. (2021) Modelling the Volatility of TOCOM Energy Futures: A Regime Switching Realised Volatility Approach. Energy Economics, 93, Article ID: 104434. https://doi.org/10.1016/j.eneco.2019.06.019
[13]  Liu, Y., Niu, Z., Suleman, M.T., Yin, L. and Zhang, H. (2022) Forecasting the Volatility of Crude Oil Futures: The Role of Oil Investor Attention and Its Regime Switching Characteristics under a High-Frequency Framework. Energy, 238, Article ID: 121779. https://doi.org/10.1016/j.energy.2021.121779
[14]  Luo, J., Klein, T., Ji, Q. and Hou, C. (2022) Forecasting Realized Volatility of Agricultural Commodity Futures with Infinite Hidden Markov HAR Models. International Journal of Forecasting, 38, 51-73.
https://doi.org/10.1016/j.ijforecast.2019.08.007
[15]  Li, X. and Ma, X. (2023) Jumps and Gold Futures Volatility Prediction. Finance Research Letters, 58, Article ID: 104492. https://doi.org/10.1016/j.frl.2023.104492
[16]  Bouri, E., Gkillas, K., Gupta, R. and Pierdzioch, C. (2021) Forecasting Realized Volatility of Bitcoin: The Role of the Trade War. Computational Economics, 57, 29-53.
https://doi.org/10.1007/s10614-020-10022-4
[17]  Baillie, R.T., Calonaci, F., Cho, D. and Rho, S. (2019) Long Memory, Realized Volatility and Heterogeneous Autoregressive Models. Journal of Time Series Analysis, 40, 609-628. https://doi.org/10.1111/jtsa.12470
[18]  Barndorff-Nielsen, O.E. and Shephard, N. (2004) Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics, 2, 1-37. https://doi.org/10.1093/jjfinec/nbh001
[19]  Christensen, K. and Podolskij, M. (2007) Realized Range-Based Estimation of Integrated Variance. Journal of Econometrics, 141, 323-349.
https://doi.org/10.1016/j.jeconom.2006.06.012
[20]  Andersen, T.G., Dobrev, D. and Schaumburg, E. (2012) Jump-Robust Volatility Estimation Using Nearest Neighbor Truncation. Journal of Econometrics, 169, 75-93.
https://doi.org/10.1016/j.jeconom.2012.01.011
[21]  Andersen, T.G., Bollerslev, T. and Diebold, F.X. (2007) Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility. The Review of Economics and Statistics, 89, 701-720.
https://doi.org/10.1162/rest.89.4.701
[22]  Corsi, F., Pirino, D. and Renò, R. (2010) Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting. Journal of Econometrics, 159, 276-288.
https://doi.org/10.1016/j.jeconom.2010.07.008
[23]  McAleer, M. and Medeiros, M.C. (2008) Realized Volatility: A Review. Econometric Reviews, 27, 10-45. https://doi.org/10.1080/07474930701853509
[24]  Busch, T., Christensen, B.J. and Nielsen, M.Ø. (2011) The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets. Journal of Econometrics, 160, 48-57.
https://doi.org/10.1016/j.jeconom.2010.03.014
[25]  Cho, S. and Shin, D.W. (2016) An Integrated Heteroscedastic Autoregressive Model for Forecasting Realized Volatilities. Journal of the Korean Statistical Society, 45, 371-380. https://doi.org/10.1016/j.jkss.2015.12.004
[26]  Luo, Y. and Huang, Y. (2018) A New Combined Approach on Hurst Exponent Estimate and Its Applications in Realized Volatility. Physica A: Statistical Mechanics and Its Applications, 492, 1364-1372. https://doi.org/10.1016/j.physa.2017.11.063
[27]  Raggi, D. and Bordignon, S. (2012) Long Memory and Nonlinearities in Realized Volatility: A Markov Switching Approach. Computational Statistics & Data Analysis, 56, 3730-3742. https://doi.org/10.1016/j.csda.2010.12.008
[28]  Andersen, T.G., Bollerslev, T., Diebold, F.X. and Ebens, H. (2001) The Distribution of Realized Stock Return Volatility. Journal of Financial Economics, 61, 43-76.
https://doi.org/10.1016/S0304-405X(01)00055-1
[29]  Giot, P. and Laurent, S. (2004) Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models. Journal of Empirical Finance, 11, 379-398.
https://doi.org/10.1016/j.jempfin.2003.04.003
[30]  Diebold, F.X. and Inoue, A. (2001) Long Memory and Regime Switching. Journal of Econometrics, 105, 131-159. https://doi.org/10.1016/S0304-4076(01)00073-2
[31]  Zhang, Y.-J. and Wang, J. (2015). Exploring the WTI Crude Oil Price Bubble Process Using the Markov Regime Switching Model. Physica A: Statistical Mechanics and Its Applications, 421, 377-387. https://doi.org/10.1016/j.physa.2014.11.051
[32]  Shimotsu, K. and Phillips, P.C.B. (2005) Exact Local Whittle Estimation of Fractional Integration. The Annals of Statistics, 33, 1890-1933.
http://www.jstor.org/stable/3448627
[33]  Wang, Y., Ma, F., Wei, Y. and Wu, C. (2016) Forecasting Realized Volatility in a Changing World: A Dynamic Model Averaging Approach. Journal of Banking & Finance, 64, 136-149. https://doi.org/10.1016/j.jbankfin.2015.12.010
[34]  Hansen, P.R. and Lunde, A. (2005) A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1, 1)? Journal of Applied Econometrics, 20, 873-889.
https://doi.org/10.1002/jae.800
[35]  Patton, A.J. (2011) Volatility Forecast Comparison Using Imperfect Volatility Proxies. Journal of Econometrics, 160, 246-256.
https://doi.org/10.1016/j.jeconom.2010.03.034
[36]  Diebold, F.X. and Mariano, R.S. (1995) Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13, 253-263. https://doi.org/10.2307/1392185
[37]  West, K.D. (1996) Asymptotic Inference about Predictive Ability. Econometrica, 64, 1067-1084. https://doi.org/10.2307/2171956
[38]  Hansen, P.R., Lunde, A. and Nason, J.M. (2011) The Model Confidence Set. Econometrica, 79, 453-497. https://doi.org/10.3982/ECTA5771

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133