This paper proposes an intelligent management system (IMS) to help
managers in their delicate and tedious task of exploiting the plethora of data
(indicators) contained in management dashboards. This system is based on
intelligent agents, ontologies and data mining. It is implemented by PASSI
(Process for Agent Societies Specification and Implementation) methods for
agent design and implementation, the Methodology for Knowledge Modeling and
Hot-Winters for data prediction. Intelligent agents not only track indicators but
also store the knowledge of managers within the company. Ontologies are used to
manage the representation and presentation aspects of knowledge. Data mining
makes it possible to: make the most of all available data; model the industrial
process of data selection, exploration and modeling; and transform behaviors
into predictive indicators. An instance of the IMS named SYGISS, currently in
operation within a large brewery organization, allows us to observe very
interesting results: the extraction of indicators is done in less than 5
minutes whereas manual extraction used to take 14 days; the generation of
dashboards is instantaneous whereas it used to take 12 hours; the
interpretation of indicators is instantaneous whereas it used to take a day;
forecasts are possible and are done in less than 5 minutes whereas they did not
exist with the old management. These important contributions help to optimize
the management of this organization.
References
[1]
Granger, R. (2021) Grille de BLAKE et MOUTON: 5 Grands Types de Management. https://www.manager-go.com/management/grille-de-blake-et-mouton.htm
[2]
Fernandez, A. Qu’est-ce que la Roue de Deming PDCA?
https://www.piloter.org/qualite/roue-de-deming-PDCA.htm/
[3]
Blog du modérateur. Gérer ses taches urgentes et importantes grace à la matrice d’Eisenhower. http://www.blogdumoderateur.com/urgent-important-eisenhower
[4]
Ballé, M. La définition du Lean management. OperaePartners.
http://www.operaepartners.fr/la-definition-du-lean-management/
[5]
Granger, R. Utiliser la méthode QQOQCP pour définir un problème.
https://www.manager-go.com/gestion-de-projet/dossiers-methodes/qqoqcp
[6]
Valoxy. Tableau de bord: outil de management indispensable pour le dirigeant.
http://blog.valoxy.org/tableau-de-bord-outil-de-management-indispensable-pour-le-dirigeant
[7]
Sturman, M.C., Hannon, J.M. and Milkovich G.T. (1996) Computerized Decision Aids for Flexible Benefits Decisions: The Effects of an Expert System and Decision Support System on Employee Intentions and Satisfaction with Benefits. Personnel Psychology, 49, 883-908. https://doi.org/10.1111/j.1744-6570.1996.tb02453.x
[8]
Malek, M. (2008) Département systèmes informatiques formels & intelligents Cycle d’ingénieur. Deuxième année, EISTI.
[9]
Chaib-draa, B., Jarras, I. and Moulin, B. (2001) Systèmes multiagents: Principes généraux et applications.
http://www.sietmanagement.fr/wp-content/uploads/2017/12/Chaib-draa2001.pdf
[10]
Ferber, J. (1995) Les systèmes multi-agents: Vers une intelligence collective. InterEditions.
[11]
Noy, N.F. and McGuinness, D.L. (1989) votre première ontology. Ressource documentaire, Université de Stanford.
[12]
Lee, H.L. and Park, C. (2003) Agent and Data Mining Based Decision Support System and Its Adaptation to a New Customer Centric Electronic Commerce. Expert Systems with Applications, 25, 619-635.
https://doi.org/10.1016/S0957-4174(03)00101-5
[13]
Cossentimo, M. (2005) From Requirements to Code with the PASSI Methodology. ICAR-CNR, Italie, Chapitre IV. https://doi.org/10.4018/978-1-59140-581-8.ch004
[14]
Fernández-López, M., Gómez-Pérez, A. and Juristo, N. (1997) Methontology: From Ontological Art towards Ontological Engineering. In: Spring Symposium on Ontological Engineering of AAAI, Stanford University, California, 33-40.
[15]
Aragon, Y. (2011) Series Temporelles Avec R. Méthode et cas. Springer, Paris.
https://doi.org/10.1007/978-2-8178-0208-4
[16]
Berrah, L., Mauris, G., Haurat, A. and Foulloy, L. (2000) Global Vision and Performance Indicators for an Industrial Improvement Approach. Computers in Industry, 43, 211-225. https://doi.org/10.1016/S0166-3615(00)00070-1