This article gives a state-of-the-art description of the cosmological Lambda-CDM model and in addition, presents extensions of the model with new calculations of background and CMB functions. Chapters 1-4 describe the background part of the model, i.e. the evolution of scale factor and density according to the Friedmann equations, and its extension, which results in a correction of the Hubble parameter, in agreement with new measurements (Cepheids-SNIa and Red-Giants). Based on this improved background calculation presented in chapters 5-9 the perturbation part of the model, i.e. the evolution of perturbation and structure according to the perturbed Einstein equations and continuity-Euler equations, and the power spectrum of the cosmic microwave background (CMB) is calculated with a new own code.
References
[1]
Fliessbach, T. (1990) Allgemeine Relativitätstheorie. Bibliographisches Institut, Leipzig.
[2]
Dodelson, S. and Schmidt, F. (2021) Modern Cosmology. Academic Press, Cambridge.
[3]
Vittorio, N. (2018) Cosmology. CRC Press, Boca Raton. https://doi.org/10.1201/b22176
[4]
Baumann, D. (2022) Cosmology. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108937092
[5]
Ciufolini, I. and Wheeler, A. (1996) Gravitation and Inertia. Princeton University Press, Princeton. https://doi.org/10.1515/9780691190198
[6]
Soff, G. (1993) Allgemeine Relativitätstheorie. Univ. Frankfurt/M, Frankfurt.
[7]
Blau, M. (2000) Lecture Notes on General Relativity. Bern University, Bern.
[8]
Stefani, H., et al. (2003) Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge.
[9]
Steiner, F. (2008) Solution of the Friedmann Equation Determining the Time Evolution. Ulm University, Ulm.
[10]
Armendariz-Picon, C. and Neelakanta, J. (2014) Journal of Cosmology and Astroparticle Physics, 3, 49. https://doi.org/10.1088/1475-7516/2014/03/049
[11]
Particle Data Group (2022). https://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmological-parameters.pdf
[12]
Shaw, J.R. and Lewis, A. (2010) Physical Review D, 81, Article ID: 043517. https://doi.org/10.1103/PhysRevD.81.043517
[13]
Helm, J. (2023) LamCDM.nb Mathematica Program. https://www.researchgate.net/profile/Jan-Helm/publications
[14]
Ma, C.-H. and Bertschinger, E. (1995) Cosmological Perturbation Theory.
Aydiner, E. (2022) The European Physical Journal, 82, 39. https://doi.org/10.1140/epjc/s10052-022-09996-2
[17]
Davis, T.M. and Lineweaver, C.H. (2003) Expanding Confusion.
[18]
Helm, J. (2018) A Covariant Formulation of the Ashtekar-Kodama Quantum Gravity and Its Solutions. https://www.researchgate.net
[19]
Crevecoeur, G.U. (2016) Evolution of the Distance Scale Factor and the Hubble Parameter.
[20]
Lewis, A. and Challinor, A. (2013) Code for Anisotropies in the Microwave Background CAMB Fortran-Python Code.
[21]
Bernardeau, F., Pitrou, C. and Uzan, J.-P. (2010) CMB Spectra and Bispectra Calculations: Making the Flat-Sky Approximation Rigorous. arXiv: astro-ph/1012.2652.
[22]
Pitrou, C. (2018) CMBquick Mathematica Program. https://www2.iap.fr/users/pitrou
[23]
Croswell, K. (1996) Alchemy of the Heavens. Anchor, New York.
[24]
Lee, R. (2020) Nuclear Physics B, 860, Article ID: 115200.
[25]
Maximon, L.C. (1968) Journal of Research of the National Bureau of Standards B, 72, 79-88. https://doi.org/10.6028/jres.072B.011
[26]
Hu, W. (2017) CMB. Lecture, University of Chicago, Chicago.
[27]
Peebles, P.J.E. (1968) The Astrophysical Journal, 153, 1. https://doi.org/10.1086/149628
[28]
Hu, W. (2001) Cosmic Microwave Background. University of Chicago, Chicago. https://background.uchicago.edu
[29]
Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198526827.001.0001
[30]
Hu, W. and White, M. (1997) CMB Anisotropies: Total Angular Momentum Method.
[31]
Helm, J. (2023) LamCDMcmb.nb Mahematica Program. https://www.researchgate.net/profile/Jan-Helm/publications