All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Evaluation of Particle Properties of MgO/TiO2 Material by Monte Carlo Simulation Method

DOI: 10.4236/msce.2024.122004, PP. 49-60

Keywords: Monte Carlo, PyPENELOPE, Primary Electrons Transmission, MgO/TiO2

Full-Text   Cite this paper   Add to My Lib

Abstract:

The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO2 material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.

References

[1]  Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96.
https://doi.org/10.1021/cr00033a004
[2]  Linsebigler, A.L., Lu, G.Q. and Yates Jr., J.T. (1997) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-738.
https://doi.org/10.1021/cr00035a013
[3]  Venkatasubramanian, R., Srivastava, R.S. and Misra, R.D.K. (2008) Comparative Study of Antimicrobial and Photocatalytic Activity in Titania Encapsulated Composite Nanoparticles with Different Dopants. Materials Science and Technology, 24, 589-595.
https://doi.org/10.1179/174328408X282065
[4]  Robichaud, C.O., Uyar, A.E., Darby, M.R., Zucker, L.G. and Wiesner, M.R. (2009) Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Environmental Science & Technology, 43, 4227-4233.
https://doi.org/10.1021/es8032549
[5]  Pérez-Larios, A., Hernandez-Gordillo, A., Morales-Mendoza, G., Lartundo-Rojas, L., Mantilla, A. and Gómez, R. (2016) Enhancing the H2 Evolution from Water-Methanol Solution Using Mn2+-Mn+3-Mn4+Redox Species of Mn-Doped TiO2 Sol-Gel. Catalysis Today, 266, 9-16.
https://doi.org/10.1016/j.cattod.2015.12.029
[6]  Anaya-Esparza, L.M., Ruvalcaba-Gómez, J.M., Romero-Toledo, R., Sánchez-Burgos, J.A., Montalvo-González, E. and Pérez-Larios, A. (2021) Investigating Structural Changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO Hybrid Films during Storage by FTIR Spectroscopy. Macedonian Journal of Chemistry and Chemical Engineering, 40,197-211.
https://doi.org/10.20450/mjcce.2021.2396
[7]  Roychaudhury, A.M., Utsa, D., Sujay, M., Goutam, K.B., Abhigyan D., Masanta, S., Achintya S., Aritra B., Debtanu G., Partha, C. and Apurba, K.D. (2022) Synthesis Structural and Anti-Microbial Characterization of Nanostructured Doped Tin Oxide. Journal of Theoretical and Applied Physics, 16, Article ID: 162202.
[8]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[9]  Li, X., Huang, H., Bin, H., Peng, Z., Zhu, C., Xue, L., Zhang, Z.G., Zhang, Z., Ade, H. and Li, Y. (2017) Synthesis and Photovoltaic Properties of a Series of Narrow Bandgap Organic Semiconductor Acceptors with Their Absorption Edge Reaching 900 nm. Chemistry of Materials, 29, 10130-10138.
https://doi.org/10.1021/acs.chemmater.7b03928
[10]  Liang, C., Can, X., Zhang, X.F. and Tao, Z. (2009) Raman and Infrared-Active Modes in MgO Nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 41, 852-855.
https://doi.org/10.1016/j.physe.2009.01.006
[11]  Fan, Y., Run. C. and Webster, T.J. (2019) Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents. International Journal of Nanomedicine, 14, 9955-9970.
https://doi.org/10.2147/IJN.S199093
[12]  Anaya-Esparza, L.M., González-Silva, N., Yahia, E.M., González-Vargas, O.A., Montalvo-González, E. and Pérez-Larios, A. (2019) Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina. Nanomaterials, 9, Article 992.
https://doi.org/10.3390/nano9070992
[13]  Jun, S.C., Dong, W.K., Jun, Y.S., Jae, H.N. and Ji, H.C. (2020) Electrical and Chemical Sensing Properties of a Printed Indium-Tin-Oxide Film for the Detection of Hazardous and Noxious Substances. Journal of the Korean Physical Society, 76, 1005-1009.
https://doi.org/10.3938/jkps.76.1005
[14]  El-Tayebany, R.A. and Elbegawy, H. (2023) Assessment of Modeling Collimator Designs for γ-Ray Transmission of Uranium Oxide Spectrometry Using HPGe Detectors. World Journal of Engineering and Technology, 11, 663-671.
https://doi.org/10.4236/wjet.2023.114044
[15]  Di, Q.L. (2022) Quasi-Monte Carlo Approximations for Exponentiated Quadratic Kernel in Latent Force Models. Open Journal of Modelling and Simulation, 10, 349-390.
https://doi.org/10.4236/ojmsi.2022.104021
[16]  Senol, K. (2022) An Investigation on Quantitative Detector Characteristics of Novel Flexible Skin Dosimeter Using Monte Carlo Simulation Method. Journal of New Results in Science, 11, 100-110.
https://doi.org/10.54187/jnrs.1103993
[17]  Michael, S., Tara, N., Genevieve, N.H., Bradley, W., Jérémie, W., Bjoern, N., Christophe, B., Volker R., David, P.F. and Mariana, I.B. (2017) Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution. IEEE Journal of Photovoltaics, 7, 590-597.
https://doi.org/10.1109/JPHOTOV.2016.2633801
[18]  Kahraman, A., Kaya, S., Jaksic, A. and Yilmaz, E. (2015) A Comprehensive Study on the Photon Energy Response of RadFET Dosimeters Using the PENELOPE Monte Carlo Code. Radiation Effects and Defects in Solids, 170, 367-376.
https://doi.org/10.1080/10420150.2015.1010167
[19]  Salvat, F., Jablonski, A. and Powell, C. (2005) ELSEPA-Dirac Partial-Wave Calculation of Elastic Scattering of Electrons and Positrons by Atoms, Positive Ions and Molecules. Computer Physics Communications, 165, 157-190.
https://doi.org/10.1016/j.cpc.2004.09.006
[20]  Liljequist, D. (1983) A Simple Calculation of Inelastic Mean Free Path and Stopping Power for 50 eV-50 keV Electrons in Solids. Journal of Physics D: Applied Physics, 16, 1567-1582.
https://doi.org/10.1088/0022-3727/16/8/023
[21]  Sternheimer, R. (1952) The Density Effect for the Ionization Loss in Various Materials. Physical Review Journals Archive, 88, 851-859.
https://doi.org/10.1103/PhysRev.88.851
[22]  Bote, D. and Salvat, F. (2008) Calculations of Inner-Shell Ionization by Electron Impact with the Distorted-Wave and Plane-Wave Born Approximations. Physical Review A, 77, Article ID: 042701.
https://doi.org/10.1103/PhysRevA.77.042701
[23]  Acosta, E., Llovet, X. and Salvat, F. (2002) Monte Carlo Simulation of Bremsstrahlung Emission by Electrons. Applied Physics Letters, 80, 3228-3330.
https://doi.org/10.1063/1.1473684
[24]  Kissel, L., Quarles, C. and Pratt, R. (1983) Shape Functions for Atomic-Field Bremsstrahlung from Electrons of Kinetic Energy 1-500 keV on Selected Neutral Atoms 1 ≤ Z ≤ 92. Atomic Data and Nuclear Data Tables, 28, 381-460.
https://doi.org/10.1016/0092-640X(83)90001-3
[25]  Brusa, D., Stutz, G., Riveros, J., Fernández-Vera, J. and Salvat, F. (1996) Fast Sampling Algorithm for the Simulation of Photon Compton Scattering. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 379, 167-175.
https://doi.org/10.1016/0168-9002(96)00652-3
[26]  Cullen, D.E., Chen, M.H., Hubbell, J.H., Perkins, S.T., Plechaty, E.F., Rathkopf, J.A. and Scofield, J.H. (1989) Tables and Graphs of Photon-Interaction cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Photon Data Library (EPDL). Lawrence Livermore National Laboratory (LLNL), Livermore.
https://doi.org/10.2172/6901925
[27]  Berger, M. and Hubbell, J. (1987) Photon cross Sections on a Personal Computer. National Bureau of Standards, Washington DC.
https://doi.org/10.2172/6016002
[28]  Perkins, S., Cullen, D., Hubbell, J., Rathkopf, J. and Scofield, J. (1991) Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-100. Lawrence Livermore National Lab. (LLNL), Livermore.
https://doi.org/10.2172/10121422
[29]  Buse, C.S., Nihan, A.S., Meltem, D.K. and Suleyman, O. (2019) Development of MgO: TiO2 Thin Films for Gas Sensor Applications. Ceramics International, 45, 2917-2921.
https://doi.org/10.1016/j.ceramint.2018.11.079
[30]  Stewart, R.D., Wilson, W.E., McDonald, J.C. and Strom, D.J. (2002) Microdosimetric Properties of Ionizing Electrons in Water: A Test of the PENELOPE Code System. Physics in Medicine and Biology, 47, 79-88.
https://doi.org/10.1088/0031-9155/47/1/306
[31]  Requena, S., Williams, S. and Quarles, C.A. (2010) A Comparison of the Bremsstrahlung Yields from 53 keV Electrons on Gold Targets Produced by PENELOPE and Experiment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 3561-3568.
https://doi.org/10.1016/j.nimb.2010.09.006
[32]  Gonzales, D., Cavness, B. and Williams, S. (2011) Angular Distribution of Thick-Target Bremsstrahlung Produced by Electrons with Initial Energies Ranging from 10 to 20 keV Incident on Ag. Physical Review A, 84, Article ID: 052726.
https://doi.org/10.1103/PhysRevA.84.052726
[33]  Statham, P., Llovet, X. and Duncumb, P. (2012) Systematic Discrepancies in Monte Carlo Predictions of k-Ratios Emitted from Thin Films on Substrates. IOP Conference Series: Materials Science and Engineering, 32, Article ID: 012024.
[34]  Adamson, P., Cannon, C. and Williams, S. (2021) Bremsstrahlung Produced by 5 keV Electrons Incident on BeO and NaCl. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 490, 43-47.
https://doi.org/10.1016/j.nimb.2021.01.006
[35]  Yi, C.Y., Hah, S.H. and Yeom, M.S. (2006) Monte Carlo Calculation of the Ionisation Chamber Response to Co-60 Beam Using PENELOPE. Medical Physics, 33, 1213-1221.
https://doi.org/10.1118/1.2188822
[36]  Camus, P. (2009) Thermo Scientific. White Paper 51782.
[37]  Hyperphysics Concept (2023) Experimental K α X-Rays Energies.
http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/kxray.html
[38]  Sangeetha, P., Divya, K.N., Sandhya, B. and Subrahmanya, B.B. (2020) Production of X-RAYS Using X-RAY Tube. Journal of Physics: Conference Series, 1712, Article ID: 012036.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133