全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国碳排放达峰省区的碳脱钩水平及驱动因素研究
Study on the Carbon Decoupling Level and Driving Factors in the Provinces with Peak Carbon Emissions in China

DOI: 10.12677/JLCE.2024.131005, PP. 52-64

Keywords: 碳达峰,投入产出模型,结构分解分析,脱钩,主动达峰
Peak Carbon Dioxide Emissions
, Input-Output Model, Structural Decomposition Analysis, Decoupling, Proactively Peaked

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合中国30个省区的2002至2017年时间序列碳排放数据分析,在2017年前有15个省区达到碳排放峰值,为探究不同省区实现碳排放达峰的路径差异,本文采用投入产出原理和结构分解分析模型,分别探究能源结构、能源强度、生产结构、部门结构和最终需求五个驱动因素在三个研究时段对碳排放达到峰值省份的不同影响,结合脱钩模型将15个省区分为主动达峰型省区和被动减排型省区。研究发现,主动达峰的省区生产结构和部门结构都较合理,其中较少省区对化石能源依旧有依赖性,一般少部分增碳效应能和减碳效应所抵消;被动减排达峰的大部分省区中,能源强度和部门结构起到了主要的增碳作用,辽宁的能源强度是增碳的主要动因,最终需求起到减碳作用,福建和云南的减碳潜力较强。总体上,建议被动减排的省区挖掘导致碳排放下降的原因,充分发挥各省区自身资源禀赋单独设定各省区的排放目标,主动达峰的省区需要找到适合该地区保持碳排放量下降趋势的路径,避免碳排放反弹,各省区需探索符合自身发展情况的“双碳”目标实现路径,以期为未达峰和未实现主动达峰的省区提供科学有效的政策依据。
Based on the analysis of time series carbon emission data of 30 provinces and regions in China from 2002 to 2017, 15 provinces reached the peak of carbon emission before 2017. In order to explore the path differences of carbon emission peak in different, this paper adopts input-output principle and structural decomposition analysis to explore the different influences of five driving factors, namely energy structure, energy intensity, production structure, departmental structure and final demand, on the provinces with carbon emission peak in three research periods, and divides 15 provinces into active provinces by combining decoupling model. It is found that the production structure and sector structure of the provinces that actively reach the peak are reasonable, among which less provinces still depend on fossil energy, and generally a small number of carbon increase effects can be offset by carbon reduction effects; in most provinces where passive emission reduction reaches its peak, energy intensity and sector structure play a major role in increasing carbon. Liaoning’s energy intensity is the main motivation for increasing carbon, and the final demand plays a role in reducing carbon. Fujian and Yunnan have strong carbon reduction potential. Generally speaking, it is suggested that provinces with passive emission reduction should explore the causes leading to the decline of carbon emissions, give full play to their own resource endowments and set their own emission targets. Proactively peaked provinces need to find a path suitable for the region to maintain the downward trend of carbon emissions and avoid the rebound of carbon emissions. Provinces need to explore the path to achieve peak carbon dioxide emissions and carbon neutrality in line with their own development, in order to provide scientific and effective policy basis for provinces that have not reached the peak and have not achieved the active peak.

References

[1]  Zou, S.H. and Zhang, T. (2020) CO Emissions, Energy Consumption, and Economic Growth Nexus: Evidence from 30 Provinces in China. Mathematical Problems in Engineering, 2020, Article ID: 8842770.
https://doi.org/10.1155/2020/8842770
[2]  Shan, Y., Huang, Q., Guan, D., et al. (2020) China CO2 Emission Ac-counts 2016-2017. Scientific Data, 7, Article No. 54.
https://doi.org/10.1038/s41597-020-0393-y
[3]  Shan, Y., Guan, D., Zheng, H., et al. (2018) China CO2 Emission Accounts 1997-2015. Scientific Data, 5, Article ID: 170201.
https://doi.org/10.1038/sdata.2017.201
[4]  Qin, H.T., Huang, Q.H., Zhang, Z.W., Lu, Y., Li, M.C., Xu, L. and Chen, Z.J. (2019) Carbon Dioxide Emission Driving Factors Analysis and Policy Implications of Chinese Cities: Com-bining Geographically Weighted Regression with Two-Step Cluster. Science of the Total Environment, 684, 413-424.
https://doi.org/10.1016/j.scitotenv.2019.05.352
[5]  刘华军, 田震, 石印. 中国二氧化碳排放的空间差异及其双维内在结构解析: 2000-2019年[J]. 地理研究, 2023, 42(3): 857-877.
[6]  刘华军, 石印, 郭立祥, 乔列成. 新时代的中国能源革命: 历程、成就与展望[J]. 管理世界, 2022, 38(7): 6-24.
https://doi.org/10.19744/j.cnki.11-1235/f.2022.0098
[7]  WRI (World Resources Institute) (2014) Mitigation Goal Standard. http://www.ghgprotocol.org/mitigation-goal-standard
[8]  C40 (2018) 27 Cities Have Reached Peak Greenhouse Gas Emissions Whilst Populations Increase and Economies Grow. https://www.c40.org/press_releases/27-cities-have-reached-peak-greenhouse-gas-emissions-whilst-populations-increase-and-economies-grow
[9]  王文举, 孔晓旭. 中国2030年碳达峰的省级目标、政策工具与路径选择[J]. 社会科学战线, 2022(11): 78-88.
[10]  胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
[11]  蒋含颖, 段祎然, 张哲, 曹丽斌, 徐少东, 张立, 蔡博峰. 基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展, 2021, 17(2): 131-139.
[12]  Shan, Y.L., Guan, Y.R., Hang, Y., Zheng, H.R., Li, Y.X., Guan, D.B., Li, J.S., Zhou, Y., Li, L. and Hubacek, K. (2022) City-Level Emission Peak and Drivers in China. Science Bulletin, 67, 1910-1920.
https://doi.org/10.1016/j.scib.2022.08.024
[13]  Xiao, H.J., Duan, Z.Y., Zhou, Y., Zhang, N., Shan, Y.L., Lin, X.Y. and Liu, G.S. (2019) CO2 Emission Patterns in Shrinking and Growing Cities: A Case Study of Northeast China and the Yangtze River Delta. Applied Energy, 251, Article ID: 113384.
https://doi.org/10.1016/j.apenergy.2019.113384
[14]  郭春丽, 易信. “双碳”目标下的中国经济增长: 影响机制、趋势特征及对策建议[J]. 经济学家, 2022(7): 24-33.
https://doi.org/10.16158/j.cnki.51-1312/f.2022.07.009
[15]  Tapio, P. (2005) Towards a Theory of Decoupling: Degrees of Decoupling in the EU and the Case of Road Traffic in Finland between 1970 and 2001. Transport Policy, 12, 137-151.
https://doi.org/10.1016/j.tranpol.2005.01.001
[16]  何建坤, 卢兰兰, 王海林. 经济增长与二氧化碳减排的双赢路径分析[J]. 中国人口·资源与环境, 2018, 28(10): 9-17.
[17]  Zhao, X.C., Jiang, M. and Zhang, W. (2022) Decoupling between Economic Development and Carbon Emissions and Its Driving Factors: Evidence from China. In-ternational Journal of Environmental Research and Public Health, 19, Article No. 2893.
https://doi.org/10.3390/ijerph19052893
[18]  张诗卉, 李明煜, 王灿, 安康欣, 周嘉欣, 蔡博峰. 中国省级碳排放趋势及差异化达峰路径[J]. 中国人口·资源与环境, 2021, 31(9): 45-54.
[19]  Xu, G.Y., Schwarz, P. and Yang, H.L. (2020) Adjusting Energy Consumption Structure to Achieve China’s CO2 Emissions Peak. Renewable and Sus-tainable Energy Reviews, 122, Article ID: 109737.
https://doi.org/10.1016/j.rser.2020.109737
[20]  Wang, X.Z., Huang, H., Hong, J.K., Ni, D.F. and He, R.X. (2020) A Spatiotemporal Investigation of Energy-Driven Factors in China: A Region-Based Structural Decomposition Analysis. Energy, 207, Article ID: 118249.
https://doi.org/10.1016/j.energy.2020.118249
[21]  Wang, K., Wu, M. and Sun, Y. (2019) Resource Abundance, Industrial Structure, and Regional Carbon Emissions Efficiency in China. Resources Policy, 60, 203-214.
https://doi.org/10.1016/j.resourpol.2019.01.001
[22]  Gao, P., Yue, S.J. and Chen, H.T. (2020) Carbon Emission Efficiency of China’s Industry Sectors: From the Perspective of Embodied Carbon Emissions. Journal of Cleaner Pro-duction, 283, Article ID: 124655.
https://doi.org/10.1016/j.jclepro.2020.124655
[23]  Leontief, W. (1936) Quantitative Input and Output Relations in the Economic Systems of the United States. The Review of Economics and Statistics, 18, 105-125.
https://doi.org/10.2307/1927837
[24]  李景华. SDA模型的加权平均分解法及在中国第三产业经济发展分析中的应用[J]. 系统工程, 2004, 22(9): 69-73.
[25]  王中英, 王礼茂. 中国经济增长对碳排放的影响分析[J]. 安全与环境学报, 2006, 6(5): 88-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133