|
Notch信号通路相关的非编码RNA在骨肉瘤中的研究进展
|
Abstract:
骨肉瘤是临床最常见的恶性成骨性肿瘤之一,具有发病率高、治愈率低的特点。Notch信号通路在调控骨肉瘤细胞增殖、凋亡、侵袭、迁移、血管生成,维持稳态等方面起重要作用,可能是预防骨肉瘤侵袭和转移的新型治疗策略。有研究证实非编码RNA如miRNA、lncRNA、circRNA等通过靶向Notch信号通路调控骨肉瘤的发生和发展,为治疗骨肉瘤提供一定的理论基础。本文章综述了Notch信号通路的组成,并重点阐述了相关非编码RNA靶向Notch信号通路在OS中的作用,对骨肉瘤的临床治疗和预后具有重要的临床意义。
Osteosarcoma is one of the most common malignant osteogenic tumors in clinic. It has the charac-teristics of high incidence rate and low cure rate. Notch signaling pathway plays an important role in regulating osteosarcoma cell proliferation, apoptosis, invasion, migration, angiogenesis and maintaining homeostasis. It may be a new therapeutic strategy to prevent osteosarcoma invasion and metastasis. Some studies have confirmed that noncoding RNAs such as miRNA, lncRNA and circRNA regulate the occurrence and development of osteosarcoma by targeting Notch signal path-way, which provides a theoretical basis for the treatment of osteosarcoma. This article reviews the composition of Notch signaling pathway, and focuses on the role of related non coding RNA targeted Notch signaling pathway in OS, which has important clinical significance for the clinical treatment and prognosis of osteosarcoma.
[1] | Ren, S., Zhang, X., Hu, Y., et al. (2020) Blocking the Notch Signal Transduction Pathway Promotes Tumor Growth in Osteosarcoma by Affecting Polarization of TAM to M2 Phenotype. Annals of Translational Medicine, 8, 1057.
https://doi.org/10.21037/atm-20-3881 |
[2] | Zhang, X., Bian, H., Wei, W., et al. (2021) DLX5 Promotes Osteosar-coma Progression via Activation of the NOTCH Signaling Pathway. American Journal of Cancer Research, 11, 3354-3374. |
[3] | Yang, J. and Zhang, W. (2013) New Molecular Insights into Osteosarcoma Targeted Therapy. Current Opinion in Oncology, 25, 398-406. https://doi.org/10.1097/CCO.0b013e3283622c1b |
[4] | Dana, P.M., Sadoughi, F., Asemi, Z., et al. (2022) Molecular Signaling Pathways as Potential Therapeutic Targets in Osteosarcoma. Current Medicinal Chemistry, 29, 4436-4444. https://doi.org/10.2174/0929867329666220209110009 |
[5] | Cui, J., Dean, D., Hornicek, F.J., et al. (2020) The Role of Extracelluar Matrix in Osteosarcoma Progression and Metastasis. Journal of Experimental & Clinical Cancer Research, 39, Article No. 178.
https://doi.org/10.1186/s13046-020-01685-w |
[6] | Rojas, G.A., Hubbard, A.K., Diessner, B.J., et al. (2021) Inter-national Trends in Incidence of Osteosarcoma (1988-2012). International Journal of Cancer, 149, 1044-1053. https://doi.org/10.1002/ijc.33673 |
[7] | Banaszek, N., Kurpiewska, D., Kozak, K., et al. (2023) Hedgehog Pathway in Sarcoma: From Preclinical Mechanism to Clinical Application. Journal of Cancer Research and Clinical Oncology, 149, 17635-17649.
https://doi.org/10.1007/s00432-023-05441-3 |
[8] | Rothzerg, E., Erber, W.N., Gibbons, C.L.M.H., et al. (2023) Osteohematology: To Be or Notch to Be. Journal of Cellular Physiology, 238, 1478-1491. https://doi.org/10.1002/jcp.31042 |
[9] | Ji, Z., Shen, J., Lan, Y., et al. (2023) Targeting Signaling Pathways in Os-teosarcoma: Mechanisms and Clinical Studies. MedComm (2020), 4, e308. https://doi.org/10.1002/mco2.308 |
[10] | Menéndez, S.T., Gallego, B., Murillo, D., et al. (2021) Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. Journal of Clinical Medicine, 10, Article No. 2621. https://doi.org/10.3390/jcm10122621 |
[11] | Chen, S., Lee, B.H. and Bae, Y. (2014) Notch Signaling in Skeletal Stem Cells. Calcified Tissue International, 94, 68-77. https://doi.org/10.1007/s00223-013-9773-z |
[12] | Nirala, B.K., Yamamichi, T. and Yustein, J.T. (2023) Deciphering the Signaling Mechanisms of Osteosarcoma Tumorigenesis. Inter-national Journal of Molecular Sciences, 24, Article No. 11367. https://doi.org/10.3390/ijms241411367 |
[13] | Zhang, J., Li, N., Lu, S., et al. (2021) The Role of Notch Ligand Jagged1 in Osteosarcoma Proliferation, Metastasis, and Recur-rence. Journal of Orthopaedic Surgery and Research, 16, Article No. 226. |
[14] | Ongaro, A., Pellati, A., Bagheri, L., et al. (2016) Characterization of Notch Signaling during Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63. Journal of Cellular Physiology, 231, 2652-2663.
https://doi.org/10.1002/jcp.25366 |
[15] | Farnood, P.R., Pazhooh, R.D., Asemi, Z., et al. (2022) Targeting Signaling Pathway by Curcumin in Osteosarcoma. Current Molecular Pharmacology, 16, 71-82. |
[16] | Yu, L., Fan, Z., Fang, S., et al. (2016) Cisplatin Selects for Stem-Like Cells in Osteosarcoma by Activating Notch Signaling. Oncotarget, 7, 33055-33068. https://doi.org/10.18632/oncotarget.8849 |
[17] | Lu, K.H., Lu, P.W., Lu, E.W., et al. (2023) Curcumin and Its Analogs and Carriers: Potential Therapeutic Strategies for Human Osteosarcoma. International Journal of Bio-logical Sciences, 19, 1241-1265.
https://doi.org/10.7150/ijbs.80590 |
[18] | Hijioka, H., Setoguchi, T., Miyawaki, A., et al. (2010) Upregulation of Notch Pathway Molecules in Oral Squamous Cell Carcinoma. International Journal of Oncology, 36, 817-822. https://doi.org/10.3892/ijo_00000558 |
[19] | Zhang, H., Chen, G., Lyu, X., et al. (2021) A Novel Predictive Model Associated with Osteosarcoma Metastasis. Cancer Management and Research, 13, 8411-8423. https://doi.org/10.2147/CMAR.S332387 |
[20] | Meurette, O. and Mehlen, P. (2018) Notch Signaling in the Tumor Microenvironment. Cancer Cell, 34, 536-548.
https://doi.org/10.1016/j.ccell.2018.07.009 |
[21] | Tang, X.F., Cao, Y., Peng, D.B., et al. (2019) Overexpression of Notch3 Is Associated with Metastasis and Poor Prognosis in Osteosarcoma Patients. Cancer Management and Research, 11, 547-559.
https://doi.org/10.2147/CMAR.S185495 |
[22] | Xu, N., Wang, X., Wang, L., et al. (2022) Comprehensive Analysis of Potential Cellular Communication Networks in Advanced Osteosarcoma Using Single-Cell RNA Sequencing Data. Frontiers in Genetics, 13, Article ID: 1013737.
https://doi.org/10.3389/fgene.2022.1013737 |
[23] | Bae, Y., Zeng, H.C., Chen, Y.T., et al. (2022) MiRNA-34c Sup-presses Osteosarcoma Progression in Vivo by Targeting Notch and E2F. JBMR Plus, 6, e10623. https://doi.org/10.1002/jbm4.10623 |
[24] | Yan, K., Gao, J., Yang, T., et al. (2012) MicroRNA-34a Inhibits the Pro-liferation and Metastasis of Osteosarcoma Cells both in Vitro and in Vivo. PLOS ONE, 7, e33778. https://doi.org/10.1371/journal.pone.0033778 |
[25] | Pu, Y., Zhao, F., Wang, H., et al. (2017) MiR-34a-5p Promotes Multi-Chemoresistance of Osteosarcoma through Down-Regulation of the DLL1 Gene. Scientific Reports, 7, Article No. 44218. https://doi.org/10.1038/srep44218 |
[26] | Li, C., Guo, D., Tang, B., et al. (2016) Notch1 Is Associated with the Multidrug Resistance of Hypoxic Osteosarcoma by Regulating MRP1 Gene Expression. Neoplasma, 63, 734-742. https://doi.org/10.4149/neo_2016_510 |
[27] | Tian, Q., Jia, J., Ling, S., et al. (2014) A Causal Role for Circulating MiR-34b in Osteosarcoma. European Journal of Surgical Oncology, 40, 67-72. https://doi.org/10.1016/j.ejso.2013.08.024 |
[28] | Pan, B.L., Wu, L., Pan, L., et al. (2018) Up-Regulation of Mi-croRNA-340 Promotes Osteosarcoma Cell Apoptosis While Suppressing Proliferation, Migration, and Invasion by Inac-tivating the CTNNB1-Mediated Notch Signaling Pathway. BioScientific Reports, 38, BSR20171615. https://doi.org/10.1042/BSR20171615 |
[29] | Wang, L., Hu, K., Chao, Y., et al. (2020) MicroRNA-1296-5p Sup-presses the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells by Targeting NOTCH2. Journal of Cellular Biochemistry, 121, 2038-2046.
https://doi.org/10.1002/jcb.29438 |
[30] | Lu, J., Song, G., Tang, Q., et al. (2017) MiR-26a Inhibits Stem Cell-Like Phenotype and Tumor Growth of Osteosarcoma by Targeting Jagged1. Oncogene, 36, 231-241. https://doi.org/10.1038/onc.2016.194 |
[31] | Cai, W.T., Guan, P., Lin, M.X., et al. (2020) MiRNA-206 Suppresses the Metastasis of Osteosarcoma via Targeting Notch3. Journal of Biological Regulators and Homeostatic Agents, 34, 775-783. |
[32] | Won, K.Y., Kim, Y.W., Kim, H.S., et al. (2013) MicroRNA-199b-5p Is Involved in the Notch Signaling Pathway in Osteosarcoma. Human Pathology, 44, 1648-1655. https://doi.org/10.1016/j.humpath.2013.01.016 |
[33] | Zeng, H., Zhang, Z., Dai, X., et al. (2016) Increased Expres-sion of MicroRNA-199b-5p Associates with Poor Prognosis through Promoting Cell Proliferation, Invasion and Migra-tion Abilities of Human Osteosarcoma. Pathology and Oncology Research, 22, 253-260. https://doi.org/10.1007/s12253-015-9901-3 |
[34] | Han, J. and Shen, X. (2020) Long Noncoding RNAs in Osteo-sarcoma via Various Signaling Pathways. Journal of Clinical Laboratory Analysis, 34, e23317. https://doi.org/10.1002/jcla.23317 |
[35] | Kushlinskii, N.E., Fridman, M.V. and Braga, E.A. (2020) Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma]. Molecular Biology (Mosk), 54, 776-801. https://doi.org/10.1134/S0026893320050052 |
[36] | Chen, L., Wang, J., Li, J.W., et al. (2020) LncRNA MEG3 In-hibits Proliferation and Promotes Apoptosis of Osteosarcoma Cells through Regulating Notch Signaling Pathway. Euro-pean Review for Medical and Pharmacological Sciences, 24, 581-590. |
[37] | Xia, P., Gu, R., Zhang, W., et al. (2020) LncRNA CEBPA-AS1 Overexpression Inhibits Proliferation and Migration and Stimulates Apoptosis of OS Cells via Notch Signaling. Molecular Therapy—Nucleic Acids, 19, 1470-1481.
https://doi.org/10.1016/j.omtn.2019.10.017 |
[38] | Zhou, S., Yu, L., Xiong, M., et al. (2018) LncRNA SNHG12 Promotes Tumorigenesis and Metastasis in Osteosarcoma by Upregulating Notch2 by Sponging MiR-195-5p. Biochem-ical and Biophysical Research Communications, 495, 1822-1832. https://doi.org/10.1016/j.bbrc.2017.12.047 |
[39] | Ghafouri-Fard, S., Khoshbakht, T., Bahranian, A., et al. (2021) CircMTO1: A Circular RNA with Roles in the Carcinogenesis. Biomedicine & Pharmacotherapy, 142, Article ID: 112025. https://doi.org/10.1016/j.biopha.2021.112025 |
[40] | Gong, G., Han, Z., Wang, W., et al. (2020) Silencing Hsa_CircRNA_0008035 Exerted Repressive Function on Osteosarcoma Cell Growth and Migration by Upregulating MicroRNA-375. Cell Cycle, 19, 2139-2147.
https://doi.org/10.1080/15384101.2020.1792636 |
[41] | Dai, G., Deng, S., Guo, W., et al. (2019) Notch Pathway In-hibition Using DAPT, a γ-Secretase Inhibitor (GSI), Enhances the Antitumor Effect of Cisplatin in Resistant Osteosar-coma. Molecular Carcinogenesis, 58, 3-18.
https://doi.org/10.1002/mc.22873 |
[42] | Qin, J., Wang, R., Zhao, C., et al. (2019) Notch Signaling Regulates Osteo-sarcoma Proliferation and Migration through Erk Phosphorylation. Tissue Cell, 59, 51-61. https://doi.org/10.1016/j.tice.2019.07.002 |
[43] | Belayneh, R. and Weiss, K. (2020) The Role of ALDH in the Meta-static Potential of Osteosarcoma Cells and Potential ALDH Targets. Advances in Experimental Medicine and Biology, 1258, 157-166.
https://doi.org/10.1007/978-3-030-43085-6_10 |
[44] | Dai, G., Liu, G., Zheng, D., et al. (2021) Inhibition of the Notch Signaling Pathway Attenuates Progression of Cell Motility, Metastasis, and Epithelial-to-Mesenchymal Transi-tion-Like Phenomena Induced by Low Concentrations of Cisplatin in Osteosarcoma. European Journal of Pharmacology, 899, Article ID: 174058.
https://doi.org/10.1016/j.ejphar.2021.174058 |