全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miR-331在人类癌症中的研究进展
Advances in miR-331 Research in Human Cancer

DOI: 10.12677/ACM.2024.142413, PP. 2916-2926

Keywords: 微小核糖核酸,非编码RNA,耐药性
MicroRNA
, Non-Coding RNA, Drug Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

非编码RNA (ncRNA)领域在了解疾病的发病机制以及认识其靶向性(尤其是癌症治疗)的方面取得了重大进展。ncRNAs是一个庞大的RNA家族,其中microRNAs (miRNAs)是一种缺乏编码蛋白的内源性RNA。目前,miRNA在癌症的发病和发展过程中所发挥的作用已被广泛的研究所发现。本综述的重点是miR-331在癌症中的作用及其与肿瘤进展的关系。miR-331同时具有致癌和抑癌功能,大多数实验与该miRNA的促肿瘤功能一致。miR-331对于代谢重编程至关重要,并可诱导糖酵解以促进肿瘤进展。miR-331通过影响某一关键蛋白或基因表达,调节细胞凋亡途径来影响细胞凋亡。miR-331刺激EMT机制,从而提高肿瘤转移。miR-331的调控使肿瘤具有一定的抗化学治疗和放射治疗的能力。越来越多的证据揭示了miR-331作为一种生物标志物的作用,因为它存在于血清和外泌体中,以便对癌症的诊断及预后进行评估。
The field of non-coding RNAs (ncRNAs) has made significant progress in understanding the patho-genesis of diseases and recognizing their targeting, especially for cancer therapy. ncRNAs are a large family of RNAs, of which microRNAs (miRNAs) are endogenous RNAs that lack coding proteins. miRNAs have been extensively investigated for their roles in the development of cancer. Role in cancer development and progression has been extensively investigated and discovered. The focus of this review is on the role of miR-331 in cancer and its relationship with tumor progression. miR-331 has both oncogenic and oncostatic functions, and most experiments are consistent with a pro-tumorigenic function of this miRNA. miR-331 is essential for metabolic reprogramming and in-duces glycolysis for tumor progression. miR-331 affects apoptotic pathways by influencing the ex-pression of a key protein or gene and regulation of the apoptotic pathway to influence apoptosis. miR-331 stimulates the EMT mechanism, which enhances tumor metastasis. miR-331 regulation provides tumors with some resistance to chemotherapy and radiation therapy. Increasing evidence reveals the role of miR-331 as a biomarker as it is present in serum and exosomes for diagnostic and prognostic evaluations of cancer.

References

[1]  Zou, Y., Zhao, X., Li, Y. and Duan, S.W. (2020) MiR-552: An Important Post-Transcriptional Regulator That Affects Human Cancer. Journal of Cancer, 11, 6226-6233.
https://doi.org/10.7150/jca.46613
[2]  Deldar Abad Paskeh, M., Mirzaei, S., Orouei, S., et al. (2021) Revealing the Role of MiRNA-489 as a New Onco-Suppressor Factor in Different Cancers Based on Pre-Clinical and Clinical Evidence. International Journal of Biological Macromolecules, 191, 727-737.
https://doi.org/10.1016/j.ijbiomac.2021.09.089
[3]  Ashrafizadeh, M., Zarrabi, A., Hushmandi, K., et al. (2021) Lung Cancer Cells and Their Sensitivity/Resistance to Cisplatin Chemotherapy: Role of MicroRNAs and Upstream Me-diators. Cellular Signalling, 78, Article ID: 109871.
https://doi.org/10.1016/j.cellsig.2020.109871
[4]  Mattiske, S., Suetani, R.J., Neilsen, P.M. and Callen, D.F. (2021) The Oncogenic Role of MiR-155 in Breast Cancer. Cancer Epidemiology, Biomarkers & Prevention, 21, 1236-1243.
https://doi.org/10.1158/1055-9965.EPI-12-0173
[5]  Krek, A., Grün, D., Poy, M.N., et al. (2005) Combinatorial MicroRNA Target Predictions. Nature Genetics, 37, 495-500.
https://doi.org/10.1038/ng1536
[6]  Zou, Y., Zhao, X., Li, Y., et al. (2021) MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Frontiers in Oncology, 11, Article ID: 743701.
[7]  Favero, A., Segatto, I., Perin, T. and Belletti, B. (2021) The Many Facets of MiR-223 in Cancer: Oncosuppressor, Oncogenic Driver, Therapeu-tic Target, and Biomarker of Response. WIREs RNA, 12, e1659.
https://doi.org/10.1002/wrna.1659
[8]  Cavallari, I., Ciccarese, F., Sharova, E., et al. (2021) The MiR-200 Family of MicroRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers, 13, Ar-ticle 5874.
https://doi.org/10.3390/cancers13235874
[9]  Hong, L., Han, Y., Zhang, H., et al. (2013) MiR-210: A Therapeutic Target in Cancer. Expert Opinion on Therapeutic Targets, 17, 21-28.
https://doi.org/10.1517/14728222.2012.732066
[10]  Pan, Y.J., Zhuang, Y., Zheng, J.N. and Pei, D.S. (2016) MiR-106a: Promising Biomarker for Cancer. Bioorganic & Medicinal Chemistry Letters, 26, 5373-5377.
https://doi.org/10.1016/j.bmcl.2016.10.042
[11]  Hermyt, E., Zmarzly, N., KruszniewskaRajs, C., et al. (2023) Ex-pression Pattern of Circadian Rhythm-Related Genes and Its Potential Relationship with MiRNAs Activity in Endometri-al Cancer. Ginekologia Polska, 94, 33-40.
https://doi.org/10.5603/GP.a2022.0063
[12]  Han, Y., Qian, X., Xu, T. and Shi, Y. (2022) Carcinoma-Associated Fibroblasts Release MicroRNA-331-3p Containing Extracellular Vesicles to Exacerbate the Development of Pancreatic Cancer via the SCARA5-FAK Axis. Cancer Biology & Therapy, 23, 378-392.
https://doi.org/10.1080/15384047.2022.2041961
[13]  Zheng, L., Li, M., Gu, R., et al. (2022) Prediction of Necroptosis-Related Markers in Head and Neck Carcinoma by Bioinformatics. Journal of Immunology Research, 2022, Article ID: 1993023.
https://doi.org/10.1155/2022/1993023
[14]  Bi, W., Yang, M., Xing, P., et al. (2022) Mi-croRNA MiR-331-3p Suppresses Osteosarcoma Progression via the Bcl-2/ Bax and Wnt/β-Catenin Signaling Pathways and the Epithelial-Mesenchymal Transition by Targeting N-Acetylgluco- saminyltransferase I (MGAT1). Bioengineered, 13, 14159-14174.
https://doi.org/10.1080/21655979.2022.2083855
[15]  Yao, B., Zhu, S., Wei, X., et al. (2022) The CircSPON2/MiR-331-3p Axis Regulates PRMT5, An Epigenetic Regulator of CAMK2N1 Transcription and Pros-tate Cancer Progression. Molecular Cancer, 21, Article No. 119.
https://doi.org/10.1186/s12943-022-01598-6
[16]  Ma, H., Shen, L., Yang, H., et al. (2022) Circular RNA CircPSAP Functions as an Efficient MiR-331-3p Sponge to Regulate Proliferation, Apoptosis and Bortezomib Sensitivi-ty of Human Multiple Myeloma Cells by Upregulating HDAC4. Journal of Pharmacological Sciences, 149, 27-36.
https://doi.org/10.1016/j.jphs.2022.01.013
[17]  Zheng, L., Wang, J., Jiang, H., et al. (2022) A Novel Necropto-sis-Related MiRNA Signature for Predicting the Prognosis of Breast Cancer Metastasis. Disease Markers, 2022, Article ID: 3391878.
https://doi.org/10.1155/2022/3391878
[18]  Li, J.L., Liu, X.L., Guo, S.F., Yang, Y., Zhu, Y.L. and Li, J.Z. (2019) Long Noncoding RNA UCA1 Regulates Proliferation and Apoptosis in Multiple Myeloma by Targeting MiR-331-3p/IL6R Axis for the Activation of JAK2/STAT3 Pathway. European Review for Medical and Pharmacologi-cal Sciences, 23, 9238-9250.
[19]  Zhou, X., Jiang, J. and Guo, S. (2021) Hsa_Circ_0004712 Downregulation Attenu-ates Ovarian Cancer Malignant Development by Targeting the MiR-331-3p/FZD4 Pathway. Journal of Ovarian Re-search, 14, Article No. 118.
https://doi.org/10.1186/s13048-021-00859-0
[20]  Sui, Y.X., Zhao, D.L., Yu, Y. and Wang, L.C. (2021) The Role, Function, and Mechanism of Long Intergenic Noncoding RNA1184 (Linc01184) in Colorectal Cancer. Disease Markers, 2021, Article ID: 8897906.
https://doi.org/10.1155/2021/8897906
[21]  Chi, Q., Geng, X., Xu, K., et al. (2020) Potential Targets and Molecular Mechanism of MiR-331-3p in Hepatocellular Carcinoma Identified by Weighted Gene Coexpression Network Analysis. Bioscience Reports, 40, BSR20200124.
https://doi.org/10.1042/BSR20200124
[22]  Chen, X., Luo, H., Li, X., et al. (2018) MiR-331-3p Functions as an Oncogene by Targeting ST7L in Pancreatic Cancer. Carcinogenesis, 39, 1006-1015.
https://doi.org/10.1093/carcin/bgy074
[23]  Zhan, T., Chen, X., Tian, X., et al. (2020) MiR-331-3p Links to Drug Resistance of Pancreatic Cancer Cells by Activating WNT/β-Catenin Signal via ST7L. Technology in Cancer Research & Treatment, 19, 1-8.
https://doi.org/10.1177/1533033820945801
[24]  Zhao, M., Zhang, M., Tao, Z., et al. (2020) MiR-331-3p Sup-presses Cell Proliferation in TNBC Cells by Downregulating NRP2. Technology in Cancer Research & Treatment, 19, 1-9.
https://doi.org/10.1177/1533033820905824
[25]  Jiang, C., Shi, X., Yi, D., et al. (2021) Long Non-Coding RNA Anti-Differentiation Non-Coding RNA Affects Proliferation, Invasion, and Migration of Breast Cancer Cells by Targeting MiR-331. Bioengineered, 12, 12236-12245.
https://doi.org/10.1080/21655979.2021.2005989
[26]  Jin, W., Zhong, N., Wang, L., et al. (2019) MiR-331-3p In-hibition of the Hepatocellular Carcinoma (HCC) Bel-7402 Cell Line by Down-Regulation of E2F1. Journal of Nanosci-ence and Nanotechnology, 19, 5476-5482.
https://doi.org/10.1166/jnn.2019.16535
[27]  Li, X., Zhu, J., Liu, Y., et al. (2019) MicroRNA-331-3p Inhibits Epi-thelial-Mesenchymal Transition by Targeting ErbB2 and VAV2 Through the Rac1/PAK1/β-Catenin Axis in Non-Small-Cell Lung Cancer. Cancer Science, 110, 1883-1896.
https://doi.org/10.1111/cas.14014
[28]  Zhang, L., Song, X., Chen, X., et al. (2019) Circular RNA CircCACTIN Promotes Gastric Cancer Progression by Sponging MiR-331-3p and Regulating TGFBR1 Expression. International Journal of Biological Sciences, 15, 1091- 1103.
https://doi.org/10.7150/ijbs.31533
[29]  Chen, H., Zong, J. and Wang, S. (2019) LncRNA GAPLINC Promotes the Growth and Metastasis of Glioblastoma by Sponging MiR-331-3p. European Review for Medical and Pharmacological Sciences, 23, 262-270.
[30]  Luan, X. and Wang, Y. (2018) LncRNA XLOC_006390 Facilitates Cervical Cancer Tu-morigenesis and Metastasis as a CeRNA against MiR-331-3p and MiR-338-3p. Journal of Gynecologic Oncology, 29, e95.
https://doi.org/10.3802/jgo.2018.29.e95
[31]  Liu, T., Song, Z. and Gai, Y. (2019) Circular RNA Circ_0001649 Acts as a Prognostic Biomarker and Inhibits NSCLC Progression via Sponging MiR-331-3p and MiR-338-5p. Bio-chemical and Biophysical Research Communications, 503, 1503-1509.
https://doi.org/10.1016/j.bbrc.2018.07.070
[32]  Zmarz?y, N., Hermyt, E., KruszniewskaRajs, C., et al. (2021) Ex-pression Profile of EMT-Related Genes and MiRNAs Involved in Signal Transduction via the Wnt Pathway and Cad-herins in Endometrial Cancer. Current Pharmaceutical Biotechnology, 22, 1663-1671.
https://doi.org/10.2174/1389201021666201218125900
[33]  Papadopoulos, E.I., Papachristopoulou, G., Ardavanis, A., et al. (2018) A Comprehensive Clinicopathological Evaluation of the Differential Expression of MicroRNA-331 in Breast Tumors and Its Diagnostic Significance. Clinical Biochemistry, 60, 24-32.
https://doi.org/10.1016/j.clinbiochem.2018.07.008
[34]  Jiang, F., Zhang, L., Liu, Y., et al. (2020) Overexpression of MiR-331 Indicates Poor Prognosis and Promotes Progression of Breast Cancer. Oncology Research and Treatment, 43, 441-448.
https://doi.org/10.1159/000508792
[35]  Wijayakumara, D.D., et al. (2018) Regulation of UDP-Glucuronosyltransferase 2B15 by MiR-331-5p in Prostate Cancer Cells Involves Canonical and Noncanonical Target Sites. Journal of Pharmacology and Experimental Therapeutics, 365, 48-59.
https://doi.org/10.1124/jpet.117.245936
[36]  Li, J., Jin, B., Wang, T., et al. (2019) Serum MicroRNA Expression Profiling Identifies Serum Biomarkers for HCV- Related Hepatocellular Carcinoma. Cancer Biomarkers, 26, 501-512.
https://doi.org/10.3233/CBM-181970
[37]  Chen, W., Quan, Y., Fan, S., et al. (2020) Exosome-Transmitted Circu-lar RNA Hsa_Circ_0051443 Suppresses Hepatocellular Carcinoma Progression. Cancer Letters, 475, 119-128.
https://doi.org/10.1016/j.canlet.2020.01.022
[38]  Sun, Q., Li, J., Jin, B., et al. (2020) Evaluation of MiR-331-3p and MiR-23b-3p as Serum Biomarkers for Hepatitis C Virus-Related Hepatocellular Carcinoma at Early Stage. Clinics and Research in Hepatology and Gastroenterology, 44, 21-28.
https://doi.org/10.1016/j.clinre.2019.03.011
[39]  Li, S., Zhao, J., Wen, S., et al. (2023) CircRNA High Mobility Group At-Hook 2 Regulates Cell Proliferation, Metastasis and Glycolytic Metabolism of Nonsmall Cell Lung Cancer by Targeting MiR-331-3p to Upregulate High Mobility Group at-Hook 2. Anticancer Drugs, 34, 81-91.
https://doi.org/10.1097/CAD.0000000000001343
[40]  Zhang, M., Song, Y. and Zhai, F. (2018) ARFHPV E7 Oncogene, LncRNA HOTAIR, MiR-331-3p and Its Target, NRP2, form a Nega-tive Feedback Loop to Regulate the Apoptosis in the Tumorigenesis in HPV Positive Cervical Cancer. Journal of Cellu-lar Biochemistry, 119, 4397-4407.
https://doi.org/10.1002/jcb.26503
[41]  Yang, S., Wang, L., Gu, L., et al. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Cervical Cancer by Delivering MicroRNA-331-3p to Reduce LIM Zinc Finger Domain Containing 2 Methylation in Tumor Cells. Human Molecular Genetics, 31, 3829-3845.
https://doi.org/10.1093/hmg/ddac130
[42]  Feng, J., Li, J., Wu, L., et al. (2020) Emerging Roles and the Regulation of Aerobic Glycolysis in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 39, Article No. 126.
https://doi.org/10.1186/s13046-020-01629-4
[43]  Zheng, X., Liu, R., Zhou, C., et al. (2021) ANGPTL4-Mediated Promotion of Glycolysis Facilitates the Colonization of Fusobacteriumnucleatum in Colorectal Cancer. Cancer Research, 81, 6157-6170.
https://doi.org/10.1158/0008-5472.CAN-21-2273
[44]  Xie, M., Fu, X.G. and Jiang, K. (2021) Notch1/TAZ Axis Promotes Aerobic Glycolysis and Immune Escape in Lung Cancer. Cell Death & Disease, 12, Article No. 832.
https://doi.org/10.1038/s41419-021-04124-6
[45]  Wu, Q., Zhang, W., Liu, Y., et al. (2021) Histone Deacetylase 1 Facilitates Aerobic Glycolysis and Growth of Endometrial Cancer. Oncology Letters, 22, Article No. 721.
https://doi.org/10.3892/ol.2021.12982
[46]  Li, X.M., Jiao, Y.Y., Luan, B.H., et al. (2020) Long Non-Coding RNA MIAT Promotes Gastric Cancer Proliferation and Metastasis via Modulating the MiR-331-3p/RAB5B Pathway. Oncol-ogy Letters, 20, Article No. 355.
https://doi.org/10.3892/ol.2020.12219
[47]  Fujii, T., Shimada, K., Tatsumi, Y., et al. (2016) Syndecan-1 Up-Regulates MicroRNA-331-3p and Mediates Epithelial-to-Mesenchymal Transition in Prostate Cancer. Molecular Carcinogenesis, 55, 1378-1386.
https://doi.org/10.1002/mc.22381
[48]  Hu, M. and Yang, J. (2020) Down-Regulation of LncRNA UCA1 Enhanc-es Radiosensitivity in Prostate Cancer by Suppressing EIF4G1 Expression via Sponging MiR-331-3p. Cancer Cell In-ternational, 20, Article No. 449.
https://doi.org/10.1186/s12935-020-01538-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133