|
PEDOT:PSS在有机太阳能电池中的应用研究进展
|
Abstract:
聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)具有良好的导电性和柔性,在可穿戴的柔性电致变色器件和柔性太阳能电池中显示出巨大的潜力。通过不同的化学沉积和物理掺杂可以更大的提高PEDOT:PSS的电化学性能。目前PEDOT:PSS在有机太阳能电池(Organic solar cells, OSCs)空穴传输层(HTL)的应用研究极为广泛,但是其具有低电导率、水/氧敏感、腐蚀电极等缺陷。为了追求优异的性能,常用的PEDOT:PSS空穴传输层仍需优化。本文综述了近年来PEDOT:PSS的各种改善方法和在有机太阳能电池空穴传输层中的应用研究最新进展,并介绍了PEDOT:PSS在柔性有机太阳能电池的应用。
Poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) has good electrical conductivity and flexibility, and shows great potential in wearable flexible electrochromic devices and flexible solar cells. The electrochemical properties of PEDOT:PSS can be greatly improved by different chemical deposition and physical doping. At present, PEDOT:PSS has been widely applied in the hole transport layer (HTL) of organic solar cells, but it has some defects such as low conductivity, water/oxygen sensitivity, corrosion electrode and so on. In order to pursue excellent performance, the commonly used PEDOT:PSS hole transport layer still needs to be optimized. In this paper, the application of PEDOT:PSS in organic solar cells is reviewed, and the different deposition methods of PEDOT:PSS and the method and mechanism of improving the performance of organic solar cells by composite films are introduced.
[1] | Meng, L., Zhang, Y., Wan, X., et al. (2018) Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency. Science, 361, 1094-1098. |
[2] | Jiang K., Wei Q., Lai J., et al. (2019) Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 3, 3020-3033. https://doi.org/10.1016/j.joule.2019.09.010 |
[3] | Li, H., Xiao, Z., Ding, L., et al. (2018) Thermostable Single-Junction Organic Solar Cells with a Power Conversion Efficiency of 14.62%. Science Bulletin, 63, 340-342. https://doi.org/10.1016/j.scib.2018.02.015 |
[4] | Sun, H., Liu, T., Yu, J., et al. (2019) A Monothiophene Unit Incorporating Both Fluoro and Ester Substitution Enabling High-Performance Donor Polymers for Non-Fullerene Solar Cells with 16.4% Efficiency. The Royal Society of Chemistry, 12, 3328-3337. https://doi.org/10.1039/C9EE01890E |
[5] | Xiao, Z., Jia, X., Ding, L., et al. (2017) Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency. Science Bulletin, 62, 1562-1564. https://doi.org/10.1016/j.scib.2017.11.003 |
[6] | Lu, S., Sun, Y., Ren, K., et al. (2017) Recent Development in ITO-Free Flexible Polymer Solar Cells. Polymers, 10, Article No. 5. https://doi.org/10.3390/polym10010005 |
[7] | Zhen, H., Wang, D., Yan, F., et al. (2018) Interfacial Engineering of Printable Bottom Back Metal Electrodes for Full-Solution Processed Flexible Organic Solar Cells. Semicond, 39, Article No. 9.
https://doi.org/10.1088/1674-4926/39/1/014002 |
[8] | Liu, K., Lu, S.D., Yue, S.Z., et al. (2016) Wrinkled Substrate and Indium Tin Oxide-Free Transparent Electrode Making Organic Solar Cells Thinner in Active Layer. Power Sources, 331, 43-49.
https://doi.org/10.1016/j.jpowsour.2016.09.038 |
[9] | Xiao, Z., Jia, X., Li, D., et al. (2017) 26 mAcm?2 JSc from Organic Solar Cells with a Low-Bandgap Non-Fullerene Acceptor. Science Bulletin, 62, 1494-1496. https://doi.org/10.1016/j.scib.2017.10.017 |
[10] | Antohe, S., Tugulea, L., et al. (2010) Electrical and Photovoltaic Properties of a Two-Layer Organic Photovoltaic Cell. Physica Status Solidi, 128, 253-260. https://doi.org/10.1002/pssa.2211280128 |
[11] | Salim, M.B., Nekovei, R., Jeyakumar, R., et al. (2020) Organic Tandem Solar Cells with 18.6% Efficiency. Solar Energy, 198, 160-166. https://doi.org/10.1016/j.solener.2020.01.042 |
[12] | Krebs, F.C., Espinosa, N., Hosel, M., et al. (2014) 25th Anniversary Article: Rise to Power-OPV-Based Solar Parks. Advanced Materials, 26, 29-39. https://doi.org/10.1002/adma.201302031 |
[13] | Yuan, J., Zhang, Y., Zhou, L., et al. (2019) Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 3, 1140-1151. https://doi.org/10.1016/j.joule.2019.01.004 |
[14] | Xiong, J., Jin, K., Jiang, Y.F., et al. (2019) Thiolactone Copolymer Donor Gifts Organic Solar Cells a 16.72% Efficiency. Science Bulletin, 64, 1573-1576. https://doi.org/10.1016/j.scib.2019.10.002 |
[15] | Liu, J., Liu, L., Zuo, C., et al. (2019) 5h-Dithieno[3,2-B:20,30-D]Pyran-5-One Unit Yields Efficient Wide-Bandgap Polymer Donors. Science Bulletin, 64, 1655-1657. https://doi.org/10.1016/j.scib.2019.09.001 |
[16] | Wang, T., Qin, J., Xiao, Z., et al. (2020) A 2.16 EV Bandgap Polymer Donor Gives 16% Power Conversion Efficiency. Science Bulletin, 65, 179-181. https://doi.org/10.1016/j.scib.2019.11.030 |
[17] | Yin, Z., Wei, J., Zheng, Q., et al. (2016) Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 3, Article ID: 1500362. https://doi.org/10.1002/advs.201500362 |
[18] | Sun, Y., Takacs, C.J., Cowan, S.R., et al. (2011) Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Advanced Materials, 23, 2226-2230. https://doi.org/10.1002/adma.201100038 |
[19] | Hu, L.J., Li, M., Yang, K., et al. (2018) PEDOT:PSS Monolayers to Enhance the Hole Extraction and Stability of Perovskite Solar Cells. Journal of Materials Chemistry, 6, 16583-16589. https://doi.org/10.1039/C8TA05234D |
[20] | Wang, C., Sun, K., Fu, J., et al. (2018) Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post-Treatment for Flexible Power Generator. Advanced Sustainable Systems, 2, Article ID: 1800085. https://doi.org/10.1002/adsu.201800085 |
[21] | Skraba, P., Bratina, G., Igarashi, S., et al. (2011) In Diffusion and Electronic Energy Structure in Polymer Layers on in Tin Oxide. Thin Solid Films, 519, 4216-4219. https://doi.org/10.1016/j.tsf.2011.02.034 |
[22] | Xia, Y., Sun, K., Ouyang, J., et al. (2012) Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials, 24, 2436-2440. https://doi.org/10.1002/adma.201104795 |
[23] | Chung, J., Park, S.M., Chang, S.O., et al. (2014) A Novel Mutation of TMPRSS3 Related to Milder Auditory Phenotype in Korean Postlingual Deafness: A Possible Future Implication for a Personalized Auditory Rehabilitation. Journal of Molecular Medicine, 92, 651-663. https://doi.org/10.1007/s00109-014-1128-3 |
[24] | Fan, X., Xu, B., Liu, S., et al. (2016) Transfer-Printed PEDOT:PSS Electrodes Using Mild Acids for High Conductivity and Improved Stability with Application to Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 8, 14029-14036. https://doi.org/10.1021/acsami.6b01389 |
[25] | Ouyang, J., Xu, Q.F., Chu, C.W., et al. (2004) On the Mechanism of Conductivity Enhancement in Poly(3,4-Ethyle- nedioxythiophene):Poly(Styrene Sulfonate) Film through Solvent Treatment. Polymer, 45, 8443-8450.
https://doi.org/10.1016/j.polymer.2004.10.001 |
[26] | Kang, Q., Liao, Q., Yang, C.Y., et al. (2022) A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 12, Article ID: 2103892. https://doi.org/10.1002/aenm.202103892 |
[27] | Hong, N.L., Xiao, J.Y., Li, Y.D., et al. (2016) Unexpected Fluorescent Emission of Graft Sulfonated-Acetone- Formaldehyde Lignin and Its Application as a Dopant of Pedot for High Performance Photovoltaic and Light-Emitting Devices. Journal of Materials Chemistry C, 4, 5297-5306. https://doi.org/10.1039/C6TC01170E |
[28] | Yagci, O., et al. (2016) Effect of Boric Acid Doped PEDOT:PSS Layer on the Performance of P3[30]HT:PCBM Based Organic Solar Cells. Synthetic Metals, 212, 12-18.
https://doi.org/10.1016/j.synthmet.2015.11.010 |
[29] | Liu, L., Li, F.F., Zhao, C.J., et al. (2019) Performance Enhancement of Conventional Polymer Solar Cells with TTF-Py-Modified PEDOT:PSS Film as the Hole Transport Layer. ACS Applied Energy Materials, 2, 6577-6583.
https://doi.org/10.1021/acsaem.9b01125 |
[30] | Toshima, N., Ichikawa, S., et al. (2015) Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials. Journal of Electronic Materials, 44, 384-390. https://doi.org/10.1007/s11664-014-3312-1 |
[31] | Zhu, Z., Song, H., Xu, J., et al. (2015) Significant Conductivity Enhancement of PEDOT:PSS Films Treated with Lithium Salt Solutions. Journal of Materials Science Materials in Electronics, 26, 429-434.
https://doi.org/10.1007/s10854-014-2417-x |
[32] | Huang, D., Goh, T., Kong, J., et al. (2017) Perovskite Solar Cells with a DMSO-Treated PEDOT:PSS Hole Transport Layer Exhibit Higher Photovoltaic Performance and Enhanced Durability. Nanoscale, 9, 4236-4243.
https://doi.org/10.1039/C6NR08375G |
[33] | Kim, G.H., Shao, L., Zhang, K., et al. (2013) Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency. Nature Materials, 12, 719-723. https://doi.org/10.1038/nmat3635 |
[34] | Timpanaro, S., Kemerink, M., Touwslager, F.J., et al. (2004) Morphology and Conductivity of PEDOT/PSS Films Studied by Scanning-Tunneling Microscopy. Chemical Physics Letters, 394, 339-343.
https://doi.org/10.1016/j.cplett.2004.07.035 |
[35] | Yu, Z., Xia, Y., Du, D., et al. (2016) PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Applied Materials & Interfaces, 8, 11629-11638. https://doi.org/10.1021/acsami.6b00317 |
[36] | Seung, H.E. (2009) Polymer Solar Cells Based on Inkjet-Printed PEDOT:PSS Layer. Organic Electronics, 10, 536-542. https://doi.org/10.1016/j.orgel.2009.01.015 |
[37] | Kang, Y.J., Kim, C.S., Kim, D.G., et al. (2012) Fully Spray-Coated Inverted Organic Solar Cells. Solar Energy Materials and Solar Cells, 103, 76-79. https://doi.org/10.1016/j.solmat.2012.04.027 |
[38] | Hu, Z., Zhang, J., Hao, Z., et al. (2011) Influence of Doped PEDOT:PSS on the Performance of Polymer Solar Cells. Solar Energy Materials and Solar Cells, 95, 2763-2767. https://doi.org/10.1016/j.solmat.2011.04.040 |
[39] | Peng, B., Guo, X., Cui, C., et al. (2011) Performance Improvement of Polymer Solar Cells by Using a Solvent-Treated Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Buffer Layer. Applied Physics Letters, 98, Article ID: 243308. https://doi.org/10.1063/1.3600665 |
[40] | Xia, Y., Ouyang, J., et al. (2012) Significant Different Conductivities of the Two Grades of PoIy(3,4-Ethylenedioxy- thiophene):Poly(Styrenesulfonate), Clevios P and Clevios PH10007 Arising from Different Molecular Weights. ACS Applied Materials & Interfaces, 4, 4131-4140. https://doi.org/10.1021/am300881m |
[41] | Fernandez-Arteaga, Y., Maldonado, J.L., Nicasio-Collazo, J., et al. (2021) Solution Processable Graphene Derivative Used in a Bilayer Anode with Conductive PEDOT:PSS on the Non-Fullerene PBDB-T:ITIC Based Organic Solar Cells. Solar Energy, 225, 656-665. https://doi.org/10.1016/j.solener.2021.07.049 |
[42] | Hong J., Min, S., et al. (2020) Highly Conductive PEDOT:PSS Electrode Obtained via Post-Treatment with Alcoholic Solvent for ITO-Free Organic Solar Cells. Journal of Industrial and Engineering Chemistry, 86, 205-210.
https://doi.org/10.1016/j.jiec.2020.03.005 |
[43] | Saghaei, J., Fallahzadeh, A., Saghaei, T., et al. (2015) ITO-Free Organic Solar Cells Using Highly Conductive Phenol-Treated PEDOT:PSS Anodes. Organic Electronics, 24, 188-194. https://doi.org/10.1016/j.orgel.2015.06.002 |
[44] | Li, W.P., Zhang, X.L., Zhang, X., et al. (2017) High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. ACS Applied Materials & Interfaces, 9, 1446-1452. https://doi.org/10.1021/acsami.6b12389 |
[45] | Zhang, X.L., Jiang, Q.Q., Wang, J.X., et al. (2020) Black Phosphorous Quantum Dots as an Effective Interlayer Modifier in Polymer Solar Cells. Solar Energy, 206, 670-676. https://doi.org/10.1016/j.solener.2020.06.007 |
[46] | Xie, Z., Xu, R., Chen, J., et al. (2019) The Modified PEDOT:PSS as Cathode Interfacial Layer for Scalable Organic Solar Cells. North-Holland, 71, 143-149. https://doi.org/10.1016/j.orgel.2019.05.012 |
[47] | Cheng, W.W., Nian, et al. (2020) Boost the Performance of Inverted Perovskite Solar Cells with PEDOT:PSS/Graphene Quantum Dots Composite Hole Transporting Layer. Organic Electronics, 78, Article ID: 105575.
https://doi.org/10.1016/j.orgel.2019.105575 |
[48] | Nguyen, D.C.T., Kim, B., Geun, H., et al. (2023) Incorporation of Carbon Quantum Dots with PEDOT:PSS for High-Performance Inverted Organic Solar Cells. Synthetic Metals, 298, Article ID: 117430.
https://doi.org/10.1016/j.synthmet.2023.117430 |
[49] | Wang, G., Zhang, M., Li, Z., et al. (2023) Efficient and Stable Organic Solar Cells Enabled by Incorporation of Titanium Dioxide Doped PEDOT:PSS as Hole Transport Layer. Progress in Organic Coatings, 183, Article ID: 107819.
https://doi.org/10.1016/j.porgcoat.2023.107819 |
[50] | Wang, Y., Li, N., Cui, M., et al. (2021) High-Performance Hole Transport Layer Based on WS2 Doped PEDOT:PSS for Organic Solar Cells. Organic Electronics, 99, Article ID: 106305. https://doi.org/10.1016/j.orgel.2021.106305 |
[51] | Zheng, Z., Hu, Q., Zhang, S.Q., et al. (2018) A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by Aine-Tuned Hole-Transporting Layer. Advanced Materials, 30, Article ID: 1801801.
https://doi.org/10.1002/adma.201801801 |
[52] | Kim, S.H., Park, B.M., Kim, G.P., et al. (2014) Annealing Effects of Au Nanoparticles Embedded PEDOT:PSS in Bulk Heterojunction Organic Solar Cells. Synthetic Metals, 192, 101-105.
https://doi.org/10.1016/j.synthmet.2014.03.019 |
[53] | Nazim, M., Sadia, A., Shaheer, A.M., et al. (2018) D-π-A-π-D Type Thiazolo[5,4-D]Thiazole-Core Organic Chromophore and Graphene Modified PEDOT:PSS Buffer Layer for Efficient Bulk Heterojunction Organic Solar Cells. Solar Energy, 171, 366-373. https://doi.org/10.1016/j.solener.2018.06.087 |
[54] | Li, Q., Sun, Y., Yang, C., et al. (2020) Optimizing the Component Ratio of PEDOT:PSS by Water Rinse for High Efficiency Organic Solar Cells over 16.7%. Science Bulletin, 65, 747-752. https://doi.org/10.1016/j.scib.2019.12.021 |
[55] | Nguyen, D.C.T., et al. (2021) Use of Modified PEDOT:PSS/Graphene Oxide Dispersions as a Hole Transport Layer for Inverted Bulk-Heterojunction Organic Solar Cells. Organic Electronics, 100, Article ID: 106388.
https://doi.org/10.1016/j.orgel.2021.106388 |
[56] | Mohammad, T., Bharti, V., Kumar, V., et al. (2019) Spray Coated Europium Doped PEDOT:PSS Anode Buffer Layer for Organic Solar Cell: The Role of Electric Field during Deposition. Organic Electronics, 66, 242-248.
https://doi.org/10.1016/j.orgel.2018.12.034 |
[57] | Li, Z., Meng, W., Tong, J., et al. (2015) A Nonionic Surfactant Simultaneously Enhancing Wetting Property and Electrical Conductivity of PEDOT:PSS for Vacuum-Free Organic Solar Cells. Solar Energy Materials and Solar Cells, 137, 311-318. https://doi.org/10.1016/j.solmat.2015.02.024 |
[58] | Jdigoras, J., Guillen, E., Ramos, F.J., et al. (2014) Highly Efficient Flexible Cathodes for Dye Sensitized Solar Cells to Complement Pt@ TCO Coatings. Journal of Materials Chemistry A, 2, 3175-3181. https://doi.org/10.1039/c3ta13524a |
[59] | Singh, T.J., Singh, S., Islam, S.M., et al. (2019) Flexible Organic Solar Cells with Graphene/PEDOT:PSS Schottky Junction on PET Substrates. Optik, 181, 984-992. https://doi.org/10.1016/j.ijleo.2018.12.179 |
[60] | Kim, D.H., Lee, D.J., Kim, B., et al. (2020) Tailoring PEDOT:PSS Polymer Electrode for Solution-Processed Inverted Organic Solar Cells. Solid-State Electronics, 169, Article ID: 107808. https://doi.org/10.1016/j.sse.2020.107808 |
[61] | Peh, R.J., Lu, Y., Zhao, F., et al. (2011) Vacuum-Free Processed Transparent Inverted Organic Solar Cells with Spray-Coated PEDOT:PSS Anode. Solar Energy Materials & Solar Cells, 95, 3579-3584.
https://doi.org/10.1016/j.solmat.2011.09.018 |
[62] | Hu, Y.C., Tang, Y., Zhang, Z.H., et al. (2022) Improving the Efficiency of Inverted Perovskite Solar Cells by Bis(Acetylacetonato) Dioxomolybdenum(VI)-Doped PEDOT:PSS. Materials Letters, 306, Article ID: 130911.
https://doi.org/10.1016/j.matlet.2021.130911 |
[63] | Marcial, F., Mazzolini, E., Sondergaard, R.R., et al. (2020) Flexible ITO-Free Roll-Processed Large-Area Nonfullerene Organic Solar Cells Based on P3HT:O-IDTBR. Journal of Engineering, 14, Article ID: 034067. |