全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2024 

沙雷氏菌CM01来源硫氧还蛋白的抗铬(VI)能力研究
Analysis of the Chromium (VI) Resistance of the Thioredoxin of Serratia sp. CM01

DOI: 10.12677/BIPHY.2024.121001, PP. 1-8

Keywords: 硫氧还蛋白,基因克隆
Thioredoxin
, Gene Cloning

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过克隆Serratia sp. M01中的硫氧还蛋白编码基因trxA、trxC,构建原核表达载体并转化至E. coli BL21(DE3)中,探究工程菌的抗铬(VI)能力。方法:以Serratia sp. CM01的DNA作模板,采用PCR扩增trxA、trxC基因,构建表达载体pET-28a(+)-trxA、pET-28a(+)-trxC并转化至E. coli BL21(DE3)表达以构建工程菌。以测定工程菌的Cr(VI)耐受、生长曲线,确定工程菌的抗Cr(VI)能力。结果:利用基因克隆技术,成功构建出trxA、trxC工程菌。测定两种工程菌的生长情况,发现在无Cr(VI)条件下,三种工程菌生长曲线没有差异(P > 0.05)。在Cr(VI)的胁迫下,两种工程菌在稳定期的菌量为:Serratia sp. CM01 > trxA ≈ trxC > Control (P < 0.05);两种工程菌的Cr(VI)耐受能力为Serratia sp. CM01 > trxA > trxC > Control (P < 0.05)。结论:trxA、trxC基因编码的蛋白均具备的耐受Cr(VI)能力,工程菌trxA抗Cr(VI)能力强于trxC,工程菌具有治理实际环境中Cr(VI)污染的潜力。
Objective: The engineered bacteria’s chromium (VI) resistance was investigated by cloning the thi-oredoxin-encoding genes trxA and trxC from Serratia sp. CM01, constructing a prokaryotic expres-sion vector and transforming it into E. coli BL21(DE3). Methods: The DNA of Serratia sp. CM01 was used as a template to amplify the trxA and trxC genes by PCR, and the expression vectors pET-28a(+)-trxA and pET-28a(+)-trxC were constructed and transformed into E. coli BL21(DE3) for expression to construct the engineering bacteria. The Cr(VI) resistance of the engineered bacteria was determined by measuring the Cr(VI) tolerance and growth curves of the engineered bacteria. Results: By using gene cloning technology, trxA and trxC engineering bacteria were successfully constructed. The growth of the two engineered bacteria showed no difference under Cr(VI)-free cir-cumstances (P > 0.05). In Cr(VI) presence, the viable bacterial cell mount during the stabilization phase was Serratia sp. CM01 > trxA ≈ trxC > Control (P < 0.05), and the tolerance rate of Cr(VI) was ranked Serratia sp. CM01 > trxA > trxC > Control (P < 0.05). Conclusion: Cr(VI)-tolerance of the pro-teins corresponding to the trxA and trxC genes. trxA has a stronger anti-Cr(VI) ability than trxC. It can potentially handle Cr(VI) pollution in the virtual environment.

References

[1]  Dong, L., Zhou, S., He, Y., Jia, Y., Bai, Q., Deng, P., Gao, J., Li, Y. and Xiao, H. (2018) Analysis of the Genome and Chro-mium Metabolism-Related Genes of Serratia sp. S2. Applied Biochemistry and Biotechnology, 185, 140-152.
https://doi.org/10.1007/s12010-017-2639-5
[2]  Hossain, M., Tasnim, S., Safa, A., Rayhan, A.B.H., Khan, M.T.I.A., Bulbul, N., Sadique, A., Ahsan, G.U. and Jime, J.S. (2020) Draft Genome Sequence of Bacillus Cereus TN10, a Chromi-um-Resistant and -Reducing Strain Isolated from Tannery Effluent. Microbiology Resource Announcements, 9, e00603-20.
https://doi.org/10.1128/MRA.00603-20
[3]  Banerjee, S., Misra, A., Chaudhury, S. and Dam, B. (2019) A Bacillus Strain TCL Isolated from Jharia Coalmine with Remarkable Stress Responses, Chromium Reduction Capability and Bioremedia-tion Potential. Journal of Hazardous Materials, 367, 215-223.
https://doi.org/10.1016/j.jhazmat.2018.12.038
[4]  Li, J., Tang, C., Zhang, M., Fan, C., Guo, D., An, Q., Wang, G., Xu, H., Li, Y., Zhang, W., Chen, X. and Zhao, R. (2021) Exploring the Cr(VI) Removal Mechanism of Sporosarcina Saromensis M52 from a Genomic Perspective. Ecotoxicology and Environ-mental Safety, 225, Article 112767.
https://doi.org/10.1016/j.ecoenv.2021.112767
[5]  刘媛, 白群华, 何劲, 等. 耐铬(Ⅵ)粘质沙雷氏菌CM01的筛选鉴定及其铬(Ⅵ)代谢特性研究[J]. 现代预防医学, 2020, 47(17): 3212-3216.
[6]  刘媛, 顾芮嘉, 邱衍伦, 等. 基于同位素标记相对和绝对定量技术研究耐铬(VI)菌株CM01的蛋白定量组学[J]. 微生物学通报, 2020, 47(10): 3183-3195.
[7]  李星龙. 耐铬沙雷氏菌CM01基因组测序分析及关键基因对铬代谢的影响研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
https://doi.org/10.27674/d.cnki.gcyku.2022.001159
[8]  Lu, J. and Holmgren, A. (2014) The Thioredoxin Antioxidant System. Free Radical Biology & Medicine, 66, 75-87.
https://doi.org/10.1016/j.freeradbiomed.2013.07.036
[9]  谭小庆, 白群华, 韩令力, 等. 耐铬沙雷氏菌CQMUS2 FMN_red基因片段的克隆与序列分析[J]. 生物技术, 2013, 23(5): 8-11.
[10]  Decorosi, F., Tatti, E., Mini, A., Giovannetti, L. and Viti, C. (2009) Characterization of Two Genes Involved in Chromate Resistance in a Cr(VI)-Hyper-Resistant Bacterium. Extremophiles: Life under Extreme Conditions, 13, 917-923.
https://doi.org/10.1007/s00792-009-0279-6
[11]  莫槟华, 黄慧敏, 刘素婷, 王磊. 微生物治理铬污染的研究进展[J]. 广东化工, 2021, 48(7): 140-141.
[12]  Kim, K.P., Hahm, B.K. and Bhunia, A.K. (2007) The 2-Cys Peroxiredoxin-Deficient Listeria Monocytogenes Displays Impaired Growth and Survival in the Presence of Hydrogen Peroxide in Vitro but Not in Mouse Organs. Current Microbiology, 54, 382-387.
https://doi.org/10.1007/s00284-006-0487-6
[13]  许莲蓉, 乔振华. 硫氧还蛋白与人类疾病相关性的研究进展[J]. 国际儿科学杂志, 2004, 31(4): 218-220.
[14]  Kuhns, L.G., Wang, G. and Maier, R.J. (2015) Comparative Roles of the Two Helicobacter Pylori Thioredoxins in Preventing Macromolecule Damage. In-fection and Immunity, 83, 2935-2943.
https://doi.org/10.1128/IAI.00232-15
[15]  Zhang, H., Cheng, D., Liu, H. and Zheng, H. (2018) Differential Responses of a Thioredoxin-Like Protein Gene to Vibrio Parahaemolyticus Challenge in the Noble Scallop Chlamys Nobilis with Different Total Carotenoids Content. Fish & Shellfish Immunology, 72, 377-382.
https://doi.org/10.1016/j.fsi.2017.11.020
[16]  Peng, M., Cascio, D. and Egea, P.F. (2015) Crystal Structure and Solution Characterization of the Thioredoxin-2 from Plasmodium Falciparum, a Constituent of an Essential Parasitic Protein Export Com-plex. Biochemical and Biophysical Research Communications, 456, 403-409.
https://doi.org/10.1016/j.bbrc.2014.11.096
[17]  Naranjo, B., Diaz-Espejo, A., Lindahl, M. and Cejudo, F.J. (2016) Type-f Thioredoxins Have a Role in the Short-Term Activation of Carbon Metabolism and Their Loss Affects Growth under Short-Day Conditions in Arabidopsis Thaliana. Journal of Experimental Botany, 67, 1951-1964.
https://doi.org/10.1093/jxb/erw017
[18]  Marchand, C.H., Vanacker, H., Collin, V., Issakidis-Bourguet, E., Maréchal, P.L. and Decottignies, P. (2010) Thioredoxin Targets in Arabidopsis Roots. Proteomics, 10, 2418-2428.
https://doi.org/10.1002/pmic.200900835
[19]  占冬波, 刘海发, 龙如意, 等. 猪链球菌2型硫氧还蛋白还原酶介导细菌应激与致病作用[J/OL]. 微生物学通报,1-9.
https://doi.org/10.13344/j.microbiol.china.230530, 2023-11-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133