|
股腘动脉病变的血管腔内治疗最新进展
|
Abstract:
全世界有超过2亿人患有外周动脉疾病(Peripheral Arterial Diseases, PAD)或其最严重的表现形式——危重肢体缺血(Critical Limb Ischemia, CLI)。尽管血管内治疗已成为大多数患者的首选治疗方法,但对于股腘动脉(Femoral-Popliteal, FP)疾病的最佳治疗仍面临诸多挑战,特别是当这些病变存在严重钙化、慢性完全闭塞(Chronictotal Occlusion, CTOs)或支架再狭窄(In-Stent Restenosis, ISR)时。但随着技术的不断进步,血管内治疗的效果显著改善。当前,许多新的材料正在积极研发中。其中包括新型的紫杉醇药物涂层支架和球囊,以及可吸收支架。这些创新材料的研发,为治疗各种类型的病变提供了新的选择。此外,血管内碎石术也被广泛应用于钙化病变的治疗,同时静脉滴注抗再狭窄药物也被用来减少再狭窄的发生率。另外,经皮股腘动脉旁路移植术等新的治疗方法也在不断涌现。
Over 200 million people worldwide suffer from Peripheral Arterial Diseases (PAD) or its most se-vere form, Critical Limb Ischemia (CLI). While endovascular treatments have become the preferred approach for the majority of patients, the optimal treatment for Femoral-Popliteal (FP) disease still presents many challenges, particularly in cases of severe calcification, Chronic Total Occlusions (CTOs), or In-Stent Restenosis (ISR). However, with advancing technology, the effectiveness of endovascular interventions has significantly improved. Currently, many new materials are actively being developed. These include novel paclitaxel coated stents and balloons, as well as absorbable scaffolds. The development of these innovative materials provides new options for treating various types of lesions. In addition, intravascular lithotripsy is widely used for the treatment of calcified le-sions, and intravenous infusion of antirestenosis drugs is used to reduce restenosis rates. Further-more, new treatment methods such as percutaneous femoral-popliteal bypass grafting are con-stantly emerging.
[1] | Ryu, G.W., Park, Y.S., Kim, J., et al. (2022) Incidence and Prevalence of Peripheral Arterial Disease in South Korea: Retrospective Analysis of National Claims Data. JMIR Public Health and Surveillance, 8, e34908.
https://doi.org/10.2196/34908 |
[2] | Mandaglio-Collados, D., Marín, F. and Rivera-Caravaca, J.M. (2023) Peripher-al Artery Disease: Update on Etiology, Pathophysiology, Diagnosis and Treatment. Medicina Clinica, 161, 344-350.
https://doi.org/10.1016/j.medcli.2023.06.005 |
[3] | Bredikhin, R.A., Krepkogorski?, N.V. and Kha?rullin, R.N. (2021) Are There Alternatives to Dual Antiplatelet Therapy after Stenting of Peripheral Arteries? Angiology and Vascular Sur-gery, 27, 22-27.
https://doi.org/10.33529/ANGID2021313 |
[4] | Kokkinidis, D.G., Katsaros, I., Jonnalagadda, A.K., Avner, S.J. and Chaitidis, N. (2019) Use, Safety and Effectiveness of Subintimal Angioplasty and Re-Entry Devices for the Treatment of Femoropopliteal Chronic Total Occlusions: A Systematic Review of 87 Studies and 4,665 Patients. Cardiovascular Re-vascularization Medicine: Including Molecular Interventions, 21, 34-45. https://doi.org/10.1016/j.carrev.2019.03.016 |
[5] | Golledge, J., Golledge, J. and Golledge, J. (2022) Update on the Pathophysiology and Medical Treatment of Peripheral Artery Disease. Nature Reviews Cardiology, 19, 456-474. https://doi.org/10.1038/s41569-021-00663-9 |
[6] | Polonsky, T.S., McDermott, M.M. and McDermott, M.M. (2021) Lower Extremity Peripheral Artery Disease without Chronic Limb-Threatening Ischemia: A Review. JAMA, 325, 2188-2198. https://doi.org/10.1001/jama.2021.2126 |
[7] | Lin, S.G., Lin, R.R., Zhang, H.K., Xu, Q.B. and He, Y.Y. (2022) Peripheral Vascular Remodeling during Ischemia. Frontiers in Pharmacology, 13, Article ID: 1078047. https://doi.org/10.3389/fphar.2022.1078047 |
[8] | Horváth, L., Horváth, L., Németh, N., Fehér, G. and Fehér, G. (2022) Epidemiology of Peripheral Artery Disease: Narrative Review. Life (Basel, Switzerland), 12, Article No. 1041. https://doi.org/10.3390/life12071041 |
[9] | Chuter, V., Schaper, N., Mills, J., Hinchliffe, R. and Russell, D. (2023) Effectiveness of Revascularisation for the Ulcerated Foot in Patients with Diabetes and Peripheral Artery Disease: A Systematic Review. Diabetes/Metabolism Research and Reviews, e3700. https://doi.org/10.1002/dmrr.3700 |
[10] | Feldman, D.N., Armstrong, E.J., Aronow, H.D., Gigliotti, O.S. and Jaff, M.R. (2018) SCAI Consensus Guidelines for Device Selection in Femoral-Popliteal Arterial Interventions. Catheteriza-tion and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 92, 124-140. https://doi.org/10.1002/ccd.27635 |
[11] | Katsanos, K., Spiliopoulos, S., Kitrou, P., Krokidis, M. and Kar-nabatidis, D. (2018) Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropoplit-eal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the Ameri-can Heart Association, 7, e011245.
https://doi.org/10.1161/JAHA.118.011245 |
[12] | Keefe, N., Shull, T., Botea, L. and McGinigle, K. (2023) Drug-Coated Balloon versus Drug-Eluting Stent: The Debate of Leave Nothing behind. Seminars in Interventional Radi-ology, 40, 161-166. https://doi.org/10.1055/s-0043-57261 |
[13] | Zeller, T., Brechtel, K., Meyer, D.-R., Noory, E. and Beschorner, U. (2020) Six-Month Outcomes from the First-in- Human, Single-Arm SELUTION Sus-tained-Limus-Release Drug-Eluting Balloon Trial in Femoropopliteal Lesions. Journal of Endovascular Therapy: An Of-ficial Journal of the International Society of Endovascular Specialists, 27, 683-690. https://doi.org/10.1177/1526602820941811 |
[14] | Amlani, V., Falkenberg, M. and Nordanstig, J. (2021) The Cur-rent Status of Drug-Coated Devices in Lower Extremity Peripheral Artery Disease Interventions. Progress in Cardio-vascular Diseases, 65, 23-28.
https://doi.org/10.1016/j.pcad.2021.02.002 |
[15] | Soga, Y., Fujihara, M., Yamamoto, Y., Nakamura, S. and Iida, O. (2021) One-Year Results for Japanese Patients in RANGER II SFA. Heart and Vessels, 37, 568-573. https://doi.org/10.1007/s00380-021-01947-3 |
[16] | Schro?, H., Sachar, R., Keirse, K., Soga, Y. and Brodmann, M. (2022) The RANGER II Superficial Femoral Artery Trial: 1-Year Results of the Long Lesion Cohort. Vascular Medicine (London, England), 27, 457-465.
https://doi.org/10.1177/1358863X221097164 |
[17] | Sachar, R., Soga, Y., Ansari, M.M., Kozuki, A. and Lopez, L. (2021) 1-Year Results from the RANGER II SFA Randomized Trial of the Ranger Drug-Coated Balloon. JACC: Cardi-ovascular Interventions, 14, 1123-1133.
https://doi.org/10.1016/j.jcin.2021.03.021 |
[18] | Gray, W.A., Jaff, M.R., Parikh, S.A., Ansel, G.M. and Brodmann, M. (2019) Mortality Assessment of Paclitaxel-Coated Balloons: Patient-Level Meta-Analysis of the ILLUMENATE Clinical Program at 3 Years. Circulation, 140, 1145-1155. https://doi.org/10.1161/CIRCULATIONAHA.119.040518 |
[19] | Armstrong, A.J., Lin, P., Tombal, B., Saad, F. and Higano, C.S. (2020) Five-Year Survival Prediction and Safety Outcomes with Enzalutamide in Men with Chemothera-py-Na?ve Metastatic Castration-Resistant Prostate Cancer from the PREVAIL Trial. European Urology, 78, 347-357. https://doi.org/10.1016/j.eururo.2020.04.061 |
[20] | El Khoury, R., Brodmann, M. and Schneider, P.A. (2021) Pro-gress on Developing an Effective Below-the-Knee Drug- Coated Balloon. Reviews in Cardiovascular Medicine, 22, 585-595. https://doi.org/10.31083/j.rcm2203070 |
[21] | Shishehbor, M.H., Scheinert, D., Jain, A., Brodmann, M. and Tepe, G. (2022) Comparison of Drug-Coated Balloons vs Bare-Metal Stents in Patients with Femoropopliteal Arteri-al Disease. Journal of the American College of Cardiology, 81, 237-249. https://doi.org/10.1016/j.jacc.2022.10.016 |
[22] | Sallustro, M., Peluso, A., Turchino, D., Maione, I. and Vita, F. (2022) Results of New Dual-Drug Coated Balloon Angioplasty versus POBA for Femoropopliteal Lesions. Annals of Vascular Surgery, 89, 52-59.
https://doi.org/10.1016/j.avsg.2022.09.047 |
[23] | Zhen, Y.H., Ren, H.Y., Chen, J., Chang, Z.H. and Wang, C.Z. (2021) Systematic Review and Meta-Analysis of Drug-Coated Balloon Angioplasty for In-Stent Restenosis in Fem-oropopliteal Artery Disease. Journal of Vascular and Interventional Radiology: JVIR, 33, 368-374.e6. https://doi.org/10.1016/j.jvir.2021.12.007 |
[24] | Haine, A., Schmid, M.J., Schindewolf, M., Lenz, A. and Bernhard, S.M. (2019) Comparison between Interwoven Nitinol and Drug Eluting Stents for Endovascular Treatment of Fem-oropopliteal Artery Disease. European Journal of Vascular and Endovascular Surgery: The Official Journal of the Eu-ropean Society for Vascular Surgery, 58, 865-873.
https://doi.org/10.1016/j.ejvs.2019.09.002 |
[25] | Kuramitsu, S., Sonoda, S., Ando, K., Otake, H. and Natsuaki, M. (2021) Drug-Eluting Stent Thrombosis: Current and Future Perspectives. Cardiovascular Intervention and Therapeutics, 36, 158-168.
https://doi.org/10.1007/s12928-021-00754-x |
[26] | Tsujimura, T., Takahara, M., Iida, O., Soga, Y. and Katsuki, T. (2021) Clinical Outcomes of Polymer-Free, Paclitaxel-Coated Stents vs Stent Grafts in Peripheral Arterial Disease Pa-tients with Femoropopliteal Artery Lesions. Journal of Vascular Surgery, 73, 1998-2008.E1. https://doi.org/10.1016/j.jvs.2020.12.061 |
[27] | Stavroulakis, K., Torsello, G., Bosiers, M., Argyriou, A. and Tsilimparis, N. (2021) 2-Year Outcomes of the Eluvia Drug-Eluting Stent for the Treatment of Complex Femoropopliteal Lesions. JACC: Cardiovascular Interventions, 14, 692-701. https://doi.org/10.1016/j.jcin.2021.01.026 |
[28] | Gou?ffic, Y., Torsello, G., Zeller, T., Esposito, G. and Vermassen, F. (2022) Efficacy of a Drug-Eluting Stent versus Bare Metal Stents for Symptomatic Femoropopliteal Peripheral Artery Disease: Primary Results of the EMINENT Randomized Trial. Circulation, 146, 1564-1576. |
[29] | Vanderland, M. and Gray, W.A. (2020) Zilver PTX Peripheral Paclitaxel-Eluting Stent: A Technology Evaluation. Expert Opinion on Drug Delivery, 17, 1335-1343. https://doi.org/10.1080/17425247.2020.1789586 |
[30] | Giannopoulos, S., Secemsky, E.A., Schneider, P.A. and Armstrong, E.J. (2022) Concomitant Drug-Coated Balloon Angioplasty with Bail-Out Use of Eluvia Drug-Eluting Stent: Is There Any Downside to a Double Dose of Paclitaxel? The Journal of Invasive Cardiology, 34, E469-E476. |
[31] | Iida, O., Fujihara, M., Kawasaki, D., Mori, S. and Yokoi, H. (2021) 24-Month Efficacy and Safety Results from Japanese Patients in the IMPERIAL Randomized Study of the Eluvia Drug-Eluting Stent and the Zilver PTX Drug-Coated Stent. Cardiovascular and Interventional Radiology, 44, 1367-1374. https://doi.org/10.1007/s00270-021-02901-6 |
[32] | Shibata, T., Iba, Y., Shingaki, M., Yamashita, O. and Tsu-bakimoto, Y. (2023) One Year Outcomes of Zilver PTX versus Eluvia for Femoropopliteal Disease in Real-World Prac-tice: REALDES Study. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovas-cular Specialists.
https://doi.org/10.1177/15266028231179861 |
[33] | Todd, M., Liu, L.B., Saul, J.M. and Yazdani, S.K. (2023) Pre-Clinical Investigation of Liquid Sirolimus for Local Drug Delivery. Frontiers in Cardiovascular Medicine, 10, Arti-cle ID: 1184816. https://doi.org/10.3389/fcvm.2023.1184816 |
[34] | Cawich, I., Armstrong, E.J., George, J.C., Gol-zar, J. and Shishehbor, M.H. (2022) Temsirolimus Adventitial Delivery to Improve ANGiographic Outcomes below the Knee. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovascular Specialists. https://doi.org/10.1177/15266028221131459 |
[35] | Razavi, M.K., Donohoe, D., D’Agostino, R.B., Jaff, M.R. and Adams, G. (2018) Adventitial Drug Delivery of Dexamethasone to Improve Primary Patency in the Treatment of Super-ficial Femoral and Popliteal Artery Disease: 12-Month Results from the DANCE Clinical Trial. JACC: Cardiovascular Interventions, 11, 921-931.
https://doi.org/10.1016/j.jcin.2017.12.015 |
[36] | Geraghty, P.J., Adams, G.L., Schmidt, A., Lichtenberg, M. and Wissgott, C. (2020) Twelve-Month Results of Tack- Optimized Balloon Angioplasty Using the Tack Endovascular Sys-tem in Below-the-Knee Arteries (TOBA II BTK). Journal of Endovascular Therapy: An Official Journal of the Interna-tional Society of Endovascular Specialists, 27, 626-636. https://doi.org/10.1177/1526602820944402 |
[37] | Gray, W.A., Cardenas, J.A., Brodmann, M., Werner, M. and Bernardo, N.I. (2019) Treating Post-Angioplasty Dissection in the Femoropopliteal Arteries Using the Tack Endovascular System: 12-Month Results from the TOBA II Study. JACC: Cardiovascular Interventions, 12, 2375-2384. https://doi.org/10.1016/j.jcin.2019.08.005 |
[38] | Vanderland, M., Ooi, Y.S. and Gray, W.A. (2021) Device Profile of the Tack Endovascular System? for the Treatment of Peripheral Arterial Disease: Overview of Safety and Efficacy. Expert Review of Medical Devices, 18, 717-726.
https://doi.org/10.1080/17434440.2021.1947243 |
[39] | Adams, G.L., Lichtenberg, M., Wissgott, C., Schmidt, A. and Tarra, T. (2022) Twenty-Four Month Results of Tack- Optimized Balloon Angioplasty Using the Tack Endovascular System in Below-the-Knee Arteries. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovascular Specialists, 30, 393-400.
https://doi.org/10.1177/15266028221083462 |
[40] | Brodmann, M., Werner, M., Sood, A. and Gray, W.A. (2023) Treating Post-Angioplasty Dissection in the Femoropopliteal Arteries Using the Tack Endovascular System: Tack Opti-mized Balloon Angioplasty II 24-Month Results. Vascular. https://doi.org/10.1177/17085381231162128 |
[41] | Brodmann, M., Wissgott, C., Brechtel, K., Lichtenberg, M. and Blessing, E. (2023) Optimized Drug-Coated Balloon Angioplasty of the Superficial Femoral and Proximal Popliteal Ar-teries Using the Tack Endovascular System: Tack Optimized Balloon Angioplasty (TOBA) III 24-Month Results in Standard and Long Lesions. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardi-ac Angiography & Interventions, 102, 701-712.
https://doi.org/10.1002/ccd.30800 |
[42] | Thandra, A., Betts, L., Aggarwal, G., Gujjula, N. and Haddad, T.M. (2022) Intravascular Lithotripsy for Acute Stent Under-Expansion and In-Stent Restenosis: A Case Series. Current Problems in Cardiology, 48, Article ID: 101511.
https://doi.org/10.1016/j.cpcardiol.2022.101511 |
[43] | Benfor, B., Sinha, K., Lumsden, A.B. and Roy, T.L. (2023) Scoping Review of Atherectomy and Intravascular Lithotripsy with or without Balloon Angioplasty in Below-the-Knee Lesions. Journal of Vascular Surgery Cases and Innovative Techniques, 9, Article ID: 101185. https://doi.org/10.1016/j.jvscit.2023.101185 |
[44] | Giannopoulos, S. and Armstrong, E.J. (2022) Intravascular Lith-otripsy for Optimal Angioplasty of Infrapopliteal Calcified Lesions. The Journal of Invasive Cardiology, 34, E132-E141. |
[45] | Vedani, S., Haligür, D., Jungi, S. and Bosiers, M.J. (2023) Intravascular Lithotripsy: A Powerful Tool to Treat Peripheral Artery Calcifications. The Journal of Cardiovascular Surgery, 64, 406-412.
https://doi.org/10.23736/S0021-9509.22.12535-8 |
[46] | Tepe, G., Brodmann, M., Werner, M., Bachinsky, W. and Holden, A. (2021) Intravascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes from the Randomized Disrupt PAD III Trial. JACC: Cardiovascular Interventions, 14, 1352-1361. https://doi.org/10.1016/j.jcin.2021.04.010 |
[47] | Karimi, A., Lauria, A.L., Aryavand, B. and Neville, R.F. (2022) Novel Therapies for Critical Limb-Threatening Ischemia. Current Cardiology Reports, 24, 513-517. https://doi.org/10.1007/s11886-022-01669-6 |
[48] | Kereiakes, D.J., Virmani, R., Hokama, J.Y., Illindala, U. and Mena-Hurtado, C. (2021) Principles of Intravascular Lithotripsy for Calcific Plaque Modification. JACC: Cardiovascular Interventions, 14, 1275-1292.
https://doi.org/10.1016/j.jcin.2021.03.036 |
[49] | Halena, G., Krievins, D.K., Scheinert, D., Savlovskis, J. and Szopiński, P. (2021) Percutaneous Femoropopliteal Bypass: 2-Year Results of the DETOUR System. Journal of Endo-vascular Therapy: An Official Journal of the International Society of Endovascular Specialists, 29, 84-95. https://doi.org/10.1177/15266028211034862 |
[50] | Krievins, D.K., Halena, G., Scheinert, D., Savlovskis, J. and Szopiński, P. (2020) One-Year Results from the DETOUR I Trial of the PQ Bypass DETOUR System for Percutaneous Femoropopliteal Bypass. Journal of Vascular Surgery, 72, 1648-1658.e2. https://doi.org/10.1016/j.jvs.2020.02.043 |
[51] | Rola, P., Rola, P., W?odarczak, S., Doroszko, A. and Lesiak, M. (2022) The Bioresorbable Magnesium Scaffold (Magmaris)-State of the Art: From Basic Concept to Clinical Application. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interven-tions, 100, 1051-1058.
https://doi.org/10.1002/ccd.30435 |
[52] | Toong, D.W.Y., Toh, H.W., Toh, H.W., Ng, J.C.K. and Ng, J.C.K. (2020) Bioresorbable Polymeric Scaffold in Cardiovascular Applications. International Journal of Molecular Sciences, 21, Arti-cle No. 3444.
https://doi.org/10.3390/ijms21103444 |
[53] | Wu, X.L., Wu, X.L., Wu, S.J., Wu, S.J. and Kawashima, H. (2021) Current Perspectives on Bioresorbable Scaffolds in Coronary Intervention and Other Fields. Expert Review of Medical Devices, 18, 1-15.
https://doi.org/10.1080/17434440.2021.1904894 |
[54] | Barkholt, T.?., Neghabat, O., Holck, E.N., Andreasen, L.N. and Christiansen, E.H. (2021) Bioresorbable Magnesium Scaffold in the Treatment of Simple Coronary Bifurcation Le-sions: The BIFSORB Pilot II Study. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 99, 1075-1083.
https://doi.org/10.1002/ccd.30051 |