全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IDH突变促进胶质瘤血管生成拟态形成的研究
A Study on IDH Mutation Promoting the Formation of Angiogenic Mimicry in Glioma

DOI: 10.12677/ACM.2024.141294, PP. 2088-2095

Keywords: 异柠檬酸脱氢酶,胶质瘤,移植瘤,血管生成拟态
IDH
, Gioma, Graft Tumor, Vasculogenic Mimicry

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:观察IDH1突变胶质瘤血管生成拟态的形成特点。方法:实验分为:突变IDH表达组(dox+组),野生IDH表达组(dox?组)。Western blot检测dox+组胶质瘤U87细胞内突变IDH1蛋白表达,HE染色观察两组细胞形态变化;管形成实验检测血管生成拟态形成;6周龄裸鼠皮下注射建立移植瘤模型,观察胶质瘤裸鼠移植瘤中的血管生成拟态,通过HE染色、免疫组化检测mutIDH1、CD34表达,高碘酸雪夫(PAS)染色观察基底膜样物形成。结果:胶质瘤U87细胞形态饱满,血管生成拟态显示,dox+组细胞管形成数量明显多于对照组(*P < 0.05);dox+组胶质瘤U87细胞内表达mutIDH1蛋白。成功构建IDH1突变(mutIDH1)人胶质瘤U87细胞移植瘤模型。HE染色显示瘤细胞生长密集,可见多量血管增生。免疫组化显示,dox+组mutIDH1表达明显,dox?组不表达mutIDH1蛋白;CD34的表达在dox?组明显多于dox+组;PAS染色发现,dox+组较dox?有更多血管生成拟态形成。结论:IDH1突变促进血管生成拟态形成。
Objective: To observe the formation characteristics of angiogenesis mimicry in IDH1-mutant glioma. Methods: The experimental groups were divided into IDH mutant group (dox+ group) and IDH non-mutant group (dox? group). Western blot was used to detect the expression of mutIDH1 pro-tein in glioma U87 cells in the dox+ group, and the morphological changes of the two groups were observed by HE staining. The ability to form the tube was tested by the angiogenesis mimic experi-ment. 6-week-old nude mice were injected subcutaneously to establish a xenograft model, and tis-sue experiments were carried out to detect the expression of mutIDH1 and CD34 by HE staining, periodic acid sherf (PAS) reagent staining, and immunohistochemistry. Angiogenesis mimicry for-mation in glioma nude mouse xenografts was observed. Results: The morphology of glioma U87 cells was full, and the angiogenesis mimicry showed that the number of the tubes like structure formed in the dox+ group was significantly more than dox? group (*P < 0.05). Glioma U87 in the dox+ group expressed mutIDH1 protein in cells. An in vitro xenograft tumor model of IDH1 mutant (mutIDH1) human glioma U87 cells was successfully constructed. HE staining showed dense growth of tumor cells and multiple angiogenesis. Immunohistochemistry showed that mutIDH1 was signif-icantly expressed in the dox+ group, but mutIDH1 protein was not expressed in the dox? group. The expression of CD34 was significantly higher in the dox? group than in the dox+ group. PAS staining showed that the dox+ group formed more angiogenic mimics than dox?. Conclusion: IDH1 mutation promotes angiogenesis mimicry

References

[1]  步宏, 李一雷. 病理学[M]. 第9版. 北京: 人民卫生出版社, 2018: 329-330.
[2]  Rosińska, S. and Gavard, J. (2021) Tumor Vessels Fuel the Fire in Glioblastoma. International Journal of Molecular Sciences, 22, 6514.
https://doi.org/10.3390/ijms22126514
[3]  Wen, P.Y. and Reardon, D.A. (2016) Progress in Glioma Diagnosis, Classification and Treatment. Nature Reviews Neurology, 12, 69-70.
https://doi.org/10.1038/nrneurol.2015.242
[4]  Kang, S., Kwon, H.N., Kang, S., et al. (2020) Interaction between IDH1 WT and Calmodulin and Its Implications for Glioblastoma Cell Growth and Migration. Biochemical and Biophys-ical Research Communications, 524, 224-230.
https://doi.org/10.1016/j.bbrc.2020.01.073
[5]  Liang, H.-W., Luo, B., Du, L.-H., He, R.-Q., Chen, G., Peng, Z.-G. and Ma, J. (2019) Expression Significance and Potential Mechanism of Hypoxia-Inducible Factor 1 Alpha in Patients with Myelodysplastic Syndromes. Cancer Medicine, 8, 6021-6035.
https://doi.org/10.1002/cam4.2447
[6]  Cen, L., Liu, R., Liu, W., et al. (2021) Competing Endogenous RNA Networks in Glioma. Frontiers in Genetics, 12, Article 675498.
https://doi.org/10.3389/fgene.2021.675498
[7]  Huang, J., Yu, J., Tu, L., Huang, N., Li, H. and Luo, Y. (2019) Isocitrate Dehydrogenase Mutations in Glioma: From Basic Discovery to Therapeutics Development. Frontiers in Oncology, 9, 506.
https://doi.org/10.3389/fonc.2019.00506
[8]  Vallée, A., Lecarpentier, Y. and Vallée, J.N. (2021) Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classifi-cation. Biomedicines, 9, 619.
https://doi.org/10.3390/biomedicines9060619
[9]  Sun, C., Zhao, Y., Shi, J., Zhang, J., Yuan, Y., Gu, Y., Zhang, F., Gao, X., Wang, C., Wang, Y., Wang, Z., Hu, P., Qin, J., Xiao, L., Chang, T., Wang, L., Xi, Y., Yin, H., Chen, H., Zhang, L., Cheng, G., Lin, J., Zhang, M., Li, Z. and Ye, J. (2019) Isocitrate Dehydrogenase 1 Mutation Reduces the Per-icyte Coverage of Microvessels in Astrocytic Tumours. Journal of Neuro-Oncology, 143, 187-196.
https://doi.org/10.1007/s11060-019-03156-5
[10]  Bledea, R., Vasudevaraja, V., Patel, S., Stafford, J., Serrano, J., Esposito, G., Tredwin, L.M., Goodman, N., Kloetgen, A., Golfinos, J.G., Zagzag, D., Weigelt, B., Iafrate, A.J., Sulman, E.P., Chi, A.S., Dogan, S., Reis-Filho, J.S., Chiang, S., Placantonakis, D., Tsirigos, A. and Snuderl, M. (2019) Func-tional and Topographic Effects on DNA Methylation in IDH1/2 Mutant Cancers. Scientific Reports, 9, Article No. 16830.
https://doi.org/10.1038/s41598-019-53262-7
[11]  Groblewska, M., Litman-Zawadzka, A. and Mroczko, B. (2020) The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. International Journal of Molecu-lar Sciences, 21, 3704.
https://doi.org/10.3390/ijms21103704
[12]  Feng, R., Morine, Y., Ikemoto, T., Imura, S., Iwahashi, S., Saito, Y. and Shimada, M. (2018) Nrf2 Activation Drive Macrophages Polarization and Cancer Cell Epithelial-Mesenchymal Transition during Interaction. Cell Commun Signal, 16, 54.
https://doi.org/10.1186/s12964-018-0262-x
[13]  Yang, C. (2021) D-2-Hydroxyglutarate in Glioma Biology. Cells, 10, 2345.
https://doi.org/10.3390/cells10092345
[14]  Gatto, L., Franceschi, E., Tosoni, A., et al. (2021) IDH Inhibitors and Beyond: The Cornerstone of Targeted Glioma Treatment. Molecular Diagnosis & Therapy, 25, 457-473.
https://doi.org/10.1007/s40291-021-00537-3
[15]  Fatima, S., Mounir, O., El Mehdi, H. and Majdouline, O. (2022) Immunohistochemical Expression of HIF-1α, IDH1 and TP53: Prognostic Profile of Moroccan Patients with Diffuse Glioma. Journal of Chemical Neuroanatomy, 119, Article 102056.
https://doi.org/10.1016/j.jchemneu.2021.102056
[16]  Shimizu, T., Kurozumi, K., Ishida, J., et al. (2016) Adhesion Molecules and the Extracellular Matrix as Drugtargets for Glioma. Brain Tumor Pathology, 33, 97-106.
https://doi.org/10.1007/s10014-016-0261-9
[17]  Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J.C., Arana-Argáez, V., Lara-Riegos, J., Ramírez-Camacho, M.A. and Alvarez-Sánchez, M.E. (2019) Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Frontiers in Oncology, 9, 1370.
https://doi.org/10.3389/fonc.2019.01370
[18]  Su, L., Zhang, X., Zheng, L., et al. (2020) Mutation of Isocitrate Dehydrogenase 1 in Cholangiocarcinoma Impairs Tumor Progression by Inhibiting Isocitrate Metabolism. Frontiers in Endocrinology, 11, 189.
https://doi.org/10.3389/fendo.2020.00189
[19]  Hua, X., Yin, S.C., By, C., et al. (2020) Androgen Receptor Re-verses the Oncometabolite R-2-Hydroxygluta- rate-Induced Prostate Cancer Cell Invasion via Suppressing the circR-NA-51217/miRNA-646/TGFβ1/p-Smad2/3 Signaling. Cancer Letters, 472, 151-164.
https://doi.org/10.1016/j.canlet.2019.12.014
[20]  Luo, Q., Wang, J., Zhao, W., et al. (2020) Vasculogenic Mimicry in Carcinogenesis and Clinical Applications. Journal of Hematology & Oncology, 13, Article No. 19.
https://doi.org/10.1186/s13045-020-00858-6
[21]  Mao, X.G., Xue, X.Y., Wang, L., et al. (2013) CDH5 Is Specif-ically Activated in Glioblastoma Stemlike Cells and Contributes to Vasculogenic Mimicry Induced by Hypoxia. Neu-ro-Oncology, 15, 865.
https://doi.org/10.1093/neuonc/not029
[22]  Yue, W.-Y. and Chen, Z.-P. (2012) Vasculogenic Mimicry-Potential Target for Glioblastoma Therapy: An in vitro and in vivo Study. Medical Oncology, 29, 324-331.
https://doi.org/10.1007/s12032-010-9765-z
[23]  Liu, Y., Lu, Y., Li, A., et al. (2020) mTORC2/Rac1 Pathway Pre-disposes Cancer Aggressiveness in IDH1-Mutated Glioma. Cancers, 12, 787.
https://doi.org/10.3390/cancers12040787
[24]  Wang, S.Y., Ke, Y.Q., Lu, G.H., et al. (2013) Vasculogenic Mimic-ry Is a Prognostic Factor for Postoperative Survival in Patients with Glioblastoma. Journal of Neuro-Oncology, 112, 339-345.
https://doi.org/10.1007/s11060-013-1077-7
[25]  Turcan, S., Makarov, V., Taranda, J., Wang, Y., Fabius, A.W.M., Wu, W., Zheng, Y., El-Amine, N., Haddock, S., Nanjangud, G., LeKaye, H.C., Brennan, C., Cross, J., Huse, J.T., Kelleher, N.L., Osten, P., Thompson, C.B. and Chan, T.A. (2018) Mutant-IDH1-Dependent Chromatin State Re-programming, Reversibility, and Persistence. Nature Genetics, 50, 62-72.
https://doi.org/10.1038/s41588-017-0001-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133