|
可见光近红外波段宽带增透膜研究
|
Abstract:
增透膜技术在各个领域的广泛应用无可否认,从日常生活中的眼镜镀膜到国家安全领域的武器系统,增透膜的重要性不断凸显。随着科技的进步和应用需求的不断提高,人们对增透膜性能的要求也越来越高。本研究通过分析增透膜理论,采用光学设计工具TFCalc软件,运用高低折射率材料的交替堆叠的膜系设计方法,利用单纯形法和针插法优化膜系结构,通过材料对比选择钠钙玻璃作为基底材料,选择TiO2、SiO2、Al2O3以及MgF2作为薄膜材料,设计了一种在400~1100 nm波段平均透过率99.0%以上的宽带增透膜,其中在400 nm处最大透过率为99.92%,1100 nm处最小透过率为99.11%。最后从膜层厚度变化和入射角度方面进行了膜层透过率的误差分析,并提出了可接受范围的误差值。
The wide-ranging applications of antireflection coating (AR coating) technology across various fields are undeniable, from the everyday use of eyeglass coatings to the crucial role it plays in national security systems. As technology advances and application demands continue to rise, the require-ments for the performance of AR coatings are becoming increasingly stringent. In this study, we conducted a comprehensive analysis of AR coating theory. We employed optical design software, TFCalc, and utilized a film stack design approach that involved the alternation of high and low re-fractive index materials. We further optimized the film stack structure using the simplex method and the needle optimization technique. To enhance the coating’s performance, we carefully selected the substrate material, sodium calcium glass, in comparison to several other materials. Additionally, we chose TiO2、SiO2、Al2O3 and MgF2as the thin-film materials. These materials allowed us to design a broadband AR coating with an average transmittance exceeding 99.0% over the spectral range of 400~1100 nm. Notably, the maximum transmittance reached 99.92% at 400 nm, while the mini-mum transmittance was 99.11% at 1100 nm. Finally, an error analysis of the film transmittance was conducted in terms of the change in film thickness and incident angle, and an acceptable range of error values was proposed.
[1] | 房淑芬, 付新华, 周滨滨. 晶体表面增透膜设计及工艺研究[J]. 长春理工大学学报(自然科学版), 2007, 30(4): 44-45. |
[2] | Tanner, H.A. and Lockhart, L.B. (1946) German Reflection Reducing Coatings for Glass. Journal of the Optical Society of America, 36, 701-706. https://doi.org/10.1364/JOSA.36.000701 |
[3] | 唐晋发, 顾培夫, 刘旭 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006. |
[4] | Abe, K., Sanada, Y. and Morimoto, T. (2001) Anti-Reflective Coatings for CRTs by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 22, 151-166. https://doi.org/10.1023/A:1011284824681 |
[5] | Raut, H.K., Ganesh, V.A., Nair, A.S., et al. (2011) Anti-Reflective Coat-ings: A Critical, in-Depth Review. Energy & Environmental Science, 4, 3779-3804. https://doi.org/10.1039/c1ee01297e |
[6] | 郑臻荣, 顾培夫, 陈海星, 等. 超宽带减反射膜的设计和制备[J]. 光学学报, 2009, 29(7): 2026-2029. |
[7] | 阙立志, 李帅, 朱华新. QK3玻璃基底上可见光区宽带增透膜研究[J]. 江南大学学报(自然科学版), 2014, 13(1): 113-116. |
[8] | 孙亚军, 朱益清, 李帅, 等. CaF2基底上近红外区宽带增透膜的研究[J]. 激光与红外, 2016, 46(1): 76-80. |
[9] | Hou, G.J., et al. (2022) High-Low Refractive Index Stacks as Antireflection Coatings on Tri-ple-Junction Solar Cells. Progress in Photovoltaics: Research and Applications, 31, 62-70. https://doi.org/10.1002/pip.3608 |
[10] | Sun, X., Xu, X., Song, G., et al. (2020) Preparation of MgF3/SiO2 Coating with Broadband Antireflective Coating by Using Sol-Gel Combined with Electron Beam Evaporation. Optical Materials, 101, Article ID: 109739.
https://doi.org/10.1016/j.optmat.2020.109739 |
[11] | 黄华义. 玻璃表面镀制增透膜的机理分析[J]. 国外建材科技, 2008, 29(6): 34-38. |
[12] | 姜浩, 龙骧, 王跃川. 新型复合双层光学增透膜的制备与性能[J]. 高分子材料科学与工程, 2006, 22(5) : 128-131. |
[13] | 卢进军, 刘卫国, 潘永强. 光学薄膜技术[M]. 北京: 电子工业出版社, 2005. |
[14] | 孙岩. 红外三波段薄膜的研究与制备[D]: [硕士学位论文]. 长春: 长春理工大学, 2011. |
[15] | 梁锉廷. 物理光学第3版[M]. 北京: 电子工业出版社, 2008: 42-43 |
[16] | Jiang, H., Long, X. and Wang, Y.C. (2020) Preparation and Property of Novel Dou-ble-Layer Antireflection Coatings. Gaofenzi Cailiao Kexue yu Gongcheng/ Polymer Materials Science & Engineering, 22, 128-131. |
[17] | Muscalu, G.L. (1995) Low-Loss Antireflection Coating for the Visible. ROMOPTO'94: Fourth Conference in Optics, Bucharest, 5-8 September 1994, 566-570. https://doi.org/10.1117/12.203482 |
[18] | 杨道奇, 付秀华, 耿似玉, 等. 0. 6~1. 55μm可见/近红外超宽带增透膜的研制[J]. 中国光学, 2012, 5(3): 74-80. |
[19] | Zhang, L., Zhao, X. and Lu, J. (2006) Study of Columnar Grain in Poly-Si Thin Films. Journal of Synthetic Crystals, 35, 1159. |
[20] | Xi, J.Q., Schubert, M.F., Kim, J.K., et al. (2007) Optical Thin-Film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection. Na-ture Photonics, 1, 176-179. https://doi.org/10.1038/nphoton.2007.26 |
[21] | 李学磊, 冯煜东, 王志民, 等. Al2O3薄膜的性能?制备与应用[J]. 真空, 2016, 53(3): 17-20. |
[22] | Shokeen, P., Jain, A., Gupta, V., et al. (2017) Multilayer Silver Nano-particles Embedded in Graded-Index Dielectric Layers. Optical Materials, 66, 29-34. https://doi.org/10.1016/j.optmat.2017.01.038 |
[23] | 王丽萍, 郭昭华, 池君洲, 王永旺, 陈东. 氧化铝多用途开发研究进展[J]. 无机盐工业, 2015(6): 11-15+62. |
[24] | Camargo, K.C., Michels, A.F., Rodembusch, F.S., et al. (2012) Multi-Scale Structured, Superhydrophobic and Wide-Angle, Antireflective Coating in the Near-Infrared Region. Chemical Communications, 48, 4992-4994.
https://doi.org/10.1039/c2cc30456b |
[25] | Patel, S.J. and Kheraj, V. (2015) Optimization of the Genetic Operators and Al-gorithm Parameters for the Design of a Multilayer Anti-Reflection Coating Using the Genetic Algorithm. Optics & Laser Tech-nology, 70, 94-99.
https://doi.org/10.1016/j.optlastec.2014.12.022 |
[26] | 张家斌, 付秀华, 贺才美. 可见与近红外增透膜的设计与制备[J]. 激光与红外, 2009, 39(5): 528-530. |
[27] | Baumeister, P. (1995) Starting Designs for the Computer Optimization of Optical Coatings. Applied Optics, 34, 4835-4843. https://doi.org/10.1364/AO.34.004835 |
[28] | Fu, X.H., Sun, Y.J., et al. (2013) Study and Fabrication of Visible and Infrared Broadband Antireflection Coating. Acta Optica Sinica, 33, 0331002. https://doi.org/10.3788/AOS201333.0331002 |
[29] | 张晓晖, 丁双红. 规整膜系层厚允许误差的研究[J]. 光子学报, 2003, 32(9): 1145-1148. |