All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Hexavalent Chromium Cr (VI) Removal from Water by Mango Kernel Powder

DOI: 10.4236/msce.2024.121007, PP. 84-103

Keywords: Adsorption, Chromium, Mango Kernel Powder, Spectroscopy Analysis, Water Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent.

References

[1]  Adechina, R.A.M.A., Kelome, N.C., Kaki, C., Hounkpe, J.B. and Randriana, N.R.F. (2019) Evaluation of Contamination Risks in Metallic Trace Elements (MTE) in the Sediments of Ouémé Delta in Benin. International Journal of Innovation and Applied Studies, 27, 943-954.
http://www.ijias.issr-journals.org/
[2]  Tiwari, A.K.I., Sunder, L.P., Srivastava, N., Shah, M., Ahmad, I., Alshahrani, M.Y. and Pal, D.B. (2022) Bioadsorbent and Adsorbent-Based Heavy Metal Removal Technologies from Waste Water: New Insight. Biomass Conversion and Biorefinery, 13, 13335-13356.
https://doi.org/10.1007/s13399-022-02343-1
[3]  Campillo-Cora, C., Rodríguez-González, L., Arias-Estévez, M., Fernández-Calviño, D. and Soto-Gómez, D. (2021) Infuence of Physicochemical Properties and Parent Material on Chromium Fractionation in Soils. Processes, 9, Article 1073.
https://doi.org/10.3390/pr9061073
[4]  Liu, Y., Ding, J., Lu, X. and You, H. (2018) Study on the DNA-Protein Crosslinks Induced by Chromium (VI) in SPC-A1. IOP Conference Series: Earth and Environmental Science, 108, Artilce ID: 042096.
https://iopscience.iop.org/journal/1755-1315
https://doi.org/10.1088/1755-1315/108/4/042096
[5]  Ai, T., Jiang, X. and Lui, Q. (2018) Chromium Removal from Industrial Wastewater Using Phyllostachys pubescens Biomass Loaded Cu-S Nanospheres. Open Biochemistry Journal, 16, 842-852.
https://doi.org/10.1515/chem-2018-0073
[6]  Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C. and Uricchio, V.F. (2020) Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies, An Overview. International Journal Environmental Research of Public Health, 17, Article 5438.
https://doi.org/10.3390/ijerph17155438
[7]  Ahmadi, A., Foroutan, R., Esmaeili, H. and Tamjidi, S. (2020) The Role of Bentonite Clay and Bentonite clay@MnFe2O4 Composite and Their Physico-Chemical Properties on the Removal of Cr(III) and Cr(VI) from Aqueous Media. Environnement Science and Pollution Research, 27, 14044-14057.
https://doi.org/10.1007/s11356-020-07756-x
[8]  Liu, W., Li, J., Zheng, J., Song, Y., Shi, Z., Lin, Z. and Chai, L. (2020) Different Pathways for Cr (III) Oxidation: Implications for Cr (VI) Reoccurrence in Reduced Chromite Ore Processing Residue. Environmental Science & Technology, 54, 11971-11979.
https://doi.org/10.1021/acs.est.0c01855
[9]  Giuseppe, G., Graziantonio, A., Catalano, A., Carocci, A. and Sinicropi, M.S. (2021) The Double Face of Metals: The Intriguing Case of Chromium. Applied Sciences, 11, Article 638.
https://doi.org/10.3390/app11020638
[10]  Vendruscolo, F., da Rocha Ferreira, G.L. and Filho, N.R.A. (2017) Biosorption of Hexavalent Chromium by Microorganisms. International Biodeterioration et Biodegradation, 119, 87-95.
https://doi.org/10.1016/j.ibiod.2016.10.008
[11]  Zarczynska, K. and Krzebietke, S. (2020) The Effect of Chromium on Ruminant Health. Journal of Elementology, 25, 1644-2296.
https://doi.org/10.5601/jelem.2020.25.1.1963
[12]  Pooja, S., Surendra, P.S., Sheetal, K.P. and Yen, W.T. (2022) Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered, 13, 4923-4938.
https://doi.org/10.1080/21655979.2022.2037273
[13]  Vale, M.S., do Nascimento, R.F., Leitao, R.C. and Santaella, S.T. (2016) Cr and Zn Biosorption by Aspergillus niger. Environmental Earth Sciences, 75, Article No. 462.
https://doi.org/10.1007/s12665-016-5343-9
[14]  Hu, H., Guo, H., Chen, Y. and Yan, S. (2022) Sediment Geochemistry and Its Influence on Chromium Enrichment in Porewater from a Deep Aquifer in the Baiyangdian Basin, China. Journal of Soils and Sediments, 22, 2815-2826.
https://doi.org/10.1007/s11368-022-03259-z
[15]  Das, B.K., Das, P.K., Das, B.P. and Dash, P. (2021) Green Technology to Limit the Effects of Hexavalent Chromium Contaminated Water Bodies on Public Health and Vegetation at Industrial Sites. Journal of Applied Biology & Biotechnology, 9, 28-35.
[16]  Vaiopoulou, E. and Gikas, P. (2020) Regulations for Chromium Emissions to the Aquatic Environment in Europe and Elsewhere. Chomosphere, 254, Article ID: 126876.
https://doi.org/10.1016/j.chemosphere.2020.126876
[17]  Wang, Y., Huang, L., Wang, Z., Wang, L., Han, Y., Liu, X. and Ma. T. (2019) Application of Polypyrrole Fexible Electrode for Electrokinetic Remediation of Cr (VI)-Contaminated Soil in a Main-Auxiliary Electrode System. Chemistry Energy Journal, 373, 131-139.
https://doi.org/10.1016/j.cej.2019.05.016
[18]  Li, L.L., Feng, X.Q., Han, R.P., Zang, S.Q. and Yang, G. (2017) Cr (VI) Removal via Anion Exchange on a Silver-Triazolate MOF. Hazardous Materials Journal, 9, 622-628.
https://doi.org/10.1016/j.jhazmat.2016.09.029
[19]  Sall, M.L., Diaw, A.K.D., Gningue-Sall, D., Chevillot-Biraud, A., Oturan, N., Oturan, M.A. and Aaron, J.J. (2017) Removal of Cr (VI) from Aqueous Solution Using Electrosynthesized 4-Amino-3-Hydroxynaphthalene-1-Sulfonic Acid Doped Polypyrrole as Adsorbent. Environment Science Pollution Research, 24, 21111-21127.
https://doi.org/10.1007/s11356-017-9713-y
[20]  Mondal, M.H., Malik, S., Garain, A., Mandal, S. and Saha, B. (2017) Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and Its Utilisation in the Remediation of Hexavalent Chromium from Contaminated Water. Tenside Surfactants Detergents, 54, 519-529.
https://doi.org/10.3139/113.110523
[21]  Njoya, O., Zhao, S., Kong, X., Shen, J., Kang, J., Wang, B. and Chen, Z. (2021) Efficiency and Potential Mechanism of Complete Cr(VI) Removal in the Presence of Oxalate by Catalytic Reduction Coupled with Membrane Filtration. Separation and Purification Technology, 275, Article ID: 118915.
https://doi.org/10.1016/j.seppur.2021.118915
[22]  Saravanan, A., Kumar, P.S., Govarthanan, M., George, C.S., Vaishnavi, S., Moulishwaran, B., Kumar, S.P., Jeevanantham, S. and Yaashikaa, P.R. (2021) Adsorption Characteristics of Magnetic Nanoparticles Coated Mixed Fungal Biomass for Toxic Cr (VI) Ions in Aquatic Environment. Chemosphere, 267, Article ID: 129226.
https://doi.org/10.1016/j.chemosphere.2020.129226
[23]  Fall, B., Gaye, C., Niang, M., Yakubu, A.A., Diaw, A.K.D., Fall, M., Sabu, T. and Hyacinthe, R. (2022) Removal of Toxic Chromium Ions in Aqueous Medium Using a New Sorbent Based on rGO@CNT@Fe2O3. Chemistry Africa, 5, 1809-1821.
https://doi.org/10.1007/s42250-022-00499-x
[24]  Vaddi, D.R., Gurugubelli, T.R., Koutavarapu, R., Lee, D.Y. and Shim, J. (2022) Bio-Stimulated Adsorption of Cr(VI) from Aqueous Solution by Groundnut Shell Activated Carbon@Al Embedded Material. Catalysts, 12, Article 290.
https://doi.org/10.3390/catal12030290
[25]  Pakade, V.E., Ntuli, T. and Ofomaja, D.A.E. (2017) Ofomaja, Biosorption of Hexavalent Chromium from Aqueous Solutions by Macadamia Nutshell Powder. Applied Water Science, 7, 3015-3030.
https://doi.org/10.1007/s13201-016-0412-5
[26]  Abdullahi, M.R. and Alkali, M.I. (2023) Removal of Chromium (VI) from Aqueous Solution Using Activated Carbon Derived from Modified Bambara Nut Shells (Vignasubterranea (L.) verdc.). Journal of Applied Sciences and Environmental Management, 27, 421-431.
https://www.ajol.info/index.php/jasem
https://doi.org/10.4314/jasem.v27i3.4
[27]  Priya, E. and Senthamil Selvan, P. (2017) Water Hyacinth (Eichhornia crassipes): An Efficient and Economic Adsorbent for Textile Effluent Treatment: A Review. Arabian Journal of Chemistry, 10, S3548-S3558.
https://doi.org/10.1016/j.arabjc.2014.03.002
[28]  Rai, M.K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R.S. and Rai, B.N. (2016) Removal of Hexavalent Chromium Cr (VI) Using Activated Carbon Prepared from Mango Kernel Activated with H3PO4. Resource-Efficient Technologies, 2, S63-S70.
https://doi.org/10.1016/j.reffit.2016.11.011
[29]  Frantz, T.S., Silveira, N., Quadro, M.S., Barcelos, A.A., Cadaval Jr., T.R.S. and Pinto, L.A.A. (2017) Cu(II) Adsorption from Copper Mine Water by Chitosan Films and the Matrix Effects. Environment Science Pollution Research, 24, 5908-5917.
https://doi.org/10.1007/s11356-016-8344-z
[30]  Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L., Vaghetti, J.C.P. and Dias, S.L.P. (2016) Reparation, Characterization and Application of Microwave-Assisted Activated Carbons from Wood Chips for Removal of Phenol from Aqueous Solution. Journal of Molecular Liquids, 223, 1067-1080.
https://doi.org/10.1016/j.molliq.2016.09.032
[31]  Kaur, J., Kaur, M., Ubhi, M.K., Kaur, N. and Greneche, J.M. (2021) Compposition Optimization of Activated Carbon-Iron Oxide Nanocomposite for Effective Removal of Cr (VI) Ions. Materials Chemistry Physics, 258, Article ID: 124002.
https://doi.org/10.1016/j.matchemphys.2020.124002
[32]  Ai, T., Wu, S.Y., Zhang, R., Gao, M., Zhou, J., Xie, J., Li, R. and Zhang, Z. (2021) Changes in the Structure and Mechanical Properties of a Typical Coal Induced by Water Immersion. International Journal of Rock Mechanics & Mining Sciences, 138, Article ID: 104597.
https://doi.org/10.1016/j.ijrmms.2020.104597
[33]  Araújo, C.S.T., Almeida, I.LS., Rezende, H.C., Marcionilio, S.M.L.O., Léon, J.J.L. and de Matos, T.N. (2018) Elucidation of Mechanism Involved in Adsorption of Pb(II) onto Lobeira Fruit (Solanum lycocarpum) Using Langmuir, Freundlich and Temkin Isotherms. Journal Saoudien des Sciences Biologiques, 137, 348-354.
https://doi.org/10.1016/j.microc.2017.11.009
[34]  Sharifnia, S., Khadivi, M.A., Shojaeimehr, T. and Shavisi, Y. (2016) Characterization, Isotherm and Kinetic Studies for Ammonium Ion Adsorption by Light Expanded Clay Aggregate (LECA). Journal of Saudi Chemical Society, 20, S342-S351.
https://doi.org/10.1016/j.jscs.2012.12.003
[35]  Ba, S., Alagui, A. and Hajjaji, M. (2018) Retention and Release of Hexavalent and Trivalent Chromium by Chitosan, Olive Stone Activated Carbon, and Their Blend. Environmental Science and Pollution Research, 25, 19585-19604.
https://doi.org/10.1007/s11356-018-2196-7
[36]  Subedi, N., Lähde, A., Abu-Danso, E., Iqbal, J. and Bhatnagar, A. (2019) A Comparative Study of Magnetic Chitosan (Chi@Fe3O4 and Graphene Oxide Modified Magnetic Chitosan (Chi@Fe3O4/GO) Nanocomposites for Efficient Removal of Cr (VI) from Water. International Journal of Biological and Macromolecules, 137, 948-959.
https://doi.org/10.1016/j.ijbiomac.2019.06.151
[37]  Xiang, L., Niu, C.G., Tang, N., Lv, X.X., Guo, H., Li, Z.W., Liu, H.Y., Lin, L.S., Yang, Y.Y. and Liang, C. (2021) Polypyrrole Coated Molybdenum Disulfde Composites as Adsorbent for Enhanced Removal of Cr (VI) in Aqueous Solutions by adsorptIon Combined with Reduction. Chemical Engineering Journal, 408, Article ID: 127281.
https://doi.org/10.1016/j.cej.2020.127281
[38]  Shi, S., Yang, J., Liang, S., Li, M., Gan, Q., Xiao, K. and Hu, J. (2018) Enhanced Cr (VI) Removal from Acidic Solutions Using Biochar Modified by Fe3O4@SiO2-NH2 Particles. Science Total Environment, 628, 499-508.
https://doi.org/10.1016/j.scitotenv.2018.02.091
[39]  Sanchez-Hachair, A. and Hofmann, A. (2018) Hexavalent Chromium Quantification in Solution: Comparing Direct UV-Visible Spectrometry with 1, 5-Diphenylcarbazide Colorimetdry. Comptes Rendus Chimie, 21, 890-896.
https://doi.org/10.1016/j.crci.2018.05.002
[40]  Kumar, A. and Pandey, G. (2017) A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal, 1, 106-114.
https://doi.org/10.15406/mseij.2017.01.00018
[41]  Homaidan, A.L., Qahtani, H.S., Al, A.A., Ghanayem, A.A., Ameen, F. and Ibraheem, I.B.M. (2018) Potential Use of Green Algae as a Biosorbent for Hexavalent Chromium Removal from Aqueous Solutions. Saudi Journal of Biological Sciences, 6, 1733-1738.
https://doi.org/10.1016/j.sjbs.2018.07.011
[42]  Guo, N., Lv, X., Li, Q., Ren, T., Song, H. and Yang, Q. (2020) Removal of Hexavalent Chromium from Aqueous Solution by Mesoporous α-FeOOH Nanoparticles: Performance and Mechanism. Microporous and Mesoporous Materials, 299, Article ID: 110101.
https://doi.org/10.1016/j.micromeso.2020.110101
[43]  Chaithanya, T.K. and Yedla, S. (2010) Adsorption of Hexa-Valent Chromium Using Treated Wood Charcoal—Elucidation of Rate-Limiting Process. Environmental technology, 31, 1495-1505.
https://doi.org/10.1080/09593331003777144
[44]  Czepirski, L., Balys, M.R. and Komorowska-Czepirska, E. (2000) Some Generalization of Langmuir Adsorption Isotherm. Internet Journal of Chemistry, 3, 1099-8292.
[45]  Da Silva Alves, D.C., Healy, B., Pinto, L.A.D.A., Cadaval Jr., T.R.S. and Breslin, C.B. (2021) Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules, 26, Article 594.
https://doi.org/10.3390/molecules26030594
[46]  Pandey, P.K., Sharma S.K. and Sambi, S.S. (2010) Kinetics and Equilibrium Study of Chromium Adsorption on zeoliteNaX. International Journal of Environmental Science and Technology, 7, 395-404.
https://doi.org/10.1007/BF03326149
[47]  Sridevi, M., Nirmala, C., Jawahar, N., Arthi, G., Vallinayagam, S. and Sharma, V.K. (2021) Role of Nanomaterial’s as Adsorbent for Heterogeneous Reaction in Waste Water Treatment. Journal of Molecular Structure, 1241, Article ID: 130596.
https://doi.org/10.1016/j.molstruc.2021.130596
[48]  Vinhal, J.O., Nege, K.K., Lage, M.R., de M Carneiro, J.W., Lima, C.F. and Cassella, R.J. (2017) Adsorption of the Herbicides Diquat and Difenzoquat on Polyurethane Foam: Kinetic, Equilibrium and Computational Studies. Ecotoxicology and Environment Safety, 145, 597-604.
https://doi.org/10.1016/j.ecoenv.2017.08.005
[49]  Pathania, D., Sharma, A. and Srivastava, A.K. (2020) Modelling Studies for Remediation of Cr (VI) from Wastewater by Activated Mangifera indica Bark. Current Research in Green and Sustainable Chemistry, 3, Article ID: 100034.
https://doi.org/10.1016/j.crgsc.2020.100034
[50]  Subramaniam, P. and Selvi, P.T. (2013) Spectral Evidence for the One-Step Three-Electron Oxidation of Phenylsufinylacetic Acid and Oxalic Acid by Cr(VI). American Journal of Analytical Chemistry, 4, 20-29.
https://doi.org/10.4236/ajac.2013.410A1003
[51]  Simha, P., Mathew, M. and Ganesapilla, M. (2016) Empirical Modeling of Drying Kinetics and Microwave Assisted Extraction of Bioactive Compounds from Adathoda vasica and Cymbopogon citrates. Alexandria Engineering Journal, 55, 141-150.
https://doi.org/10.1016/j.aej.2015.12.020
[52]  Li, J., Lin, Q., Zhang, X. and Yan, Y. (2009) Kinetic Parameters and Mechanisms of the Batch Biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz Biomass. Journal of Colloid Interface Science, 333, 71-77.
https://doi.org/10.1016/j.jcis.2009.02.021
[53]  OFomaja, A.E. and Naidoo, E.B. (2011) Biosorption of Copper from Aqueous Solution by Chemically Activated Pine Cone: A Kinetic Study. Chemical Engineering Journal, 175, 260-270.
https://doi.org/10.1016/j.cej.2011.09.103
[54]  Karimi-Maleh, H., Ayati, A., Ghanbari, S., Orooji, Y., Tanhaei, B., Karimi, F., Alizadeh, M. Rouhi, J., Fu, L. and Sillanpää, M. (2021) Recent Advances in Removal Techniques of Cr (VI) Toxic Ion from Aqueous Solution: A Comprehensive Review. Journal of molecular liquids, 329, Article ID: 115062.
https://doi.org/10.1016/j.molliq.2020.115062
[55]  Nasanjargal, S., Munkhpurev, B.A., Kano, N., Kim, H.J. and Ganchimeg, Y. (2021) The Removal of Chromium(VI) from Aqueous Solution by Amine-Functionalized Zeolite: Kinetics, Thermodynamics, and Equilibrium Study. Journal of Environmental Protection, 12, 654-675.
https://doi.org/10.4236/jep.2021.129040
[56]  Zhang, L., Niu, W., Sun, J. and Zhou, Q. (2020) Efficient Removal of Cr(VI) from Water by the Uniform Fiber Ball Loaded with Polypyrrole: Static Adsorption, Dynamic Adsorption and Mechanism Studies. Chemosphere, 248, Article ID: 126102.
https://doi.org/10.1016/j.chemosphere.2020.126102

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133