Landslides are highly dangerous phenomena that occur
in different parts of the world and pose significant threats to human
populations. Intense rainfall events are the main triggering process for
landslides in urbanized slope regions, especially those considered high-risk
areas. Various other factors contribute to the process; thus, it is essential
to analyze the causes of such incidents in all possible ways. Soil moisture
plays a critical role in the Earth’s surface-atmosphere interaction systems; hence, measurements and their
estimations are crucial for understanding all processes involved in the water
balance, especially those related to landslides. Soil moisture can be estimated
from in-situ measurements using
different sensors and techniques, satellite remote sensing, hydrological
modeling, and indicators to index moisture conditions. Antecedent soil moisture
can significantly impact runoff for the same rainfall event in a watershed. The
Antecedent Precipitation Index (API) or “retained
rainfall,” along with the antecedent moisture condition from the Natural
Resources Conservation Service, is generally applied to estimate runoff in
watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and
establish thresholds based on landslide occurrences. The estimated soil
moisture will be compared and calibrated using measurements obtained through
multisensor capacitance probes installed in a high-risk area located in the
mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API
used in the calculation has been modified, where the recession
coefficient depends on air temperature variability as well as the
climatological mean temperature, which can be considered as losses in the water
balance due to evapotranspiration. Once the API is calibrated, it will be used
to extrapolate to the entire watershed and consequently estimate soil moisture.
By utilizing recorded mass movements and comparing them with API and soil
moisture, it will be possible to determine thresholds, thus enabling
anticipation of landslide
References
[1]
Aditian, A., Kubota, T. and Shinohara, Y. (2018) Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology, 318, 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006
[2]
Bortolozo, C.A., Andrade, M.R.M., Mendes, T.S.G., Egas, H.M., Moraes, M.A.E., Pryer, T., Prieto, C.C., Metodiev, D., Simões, S.J.C. and Mendes, R.M. (2022) The Tragedy of Morro do Centenário in Petrópolis—RJ, Brazil (February 15, 2022): Landslide Complexity Analyzed from a Multidisciplinary Perspective. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1122883
[3]
Coelho-Netto, A.L., de Souza Avelar, A. and Lacerda, W.A. (2009) Landslides and Disasters in Southeastern and Southern Brazil. Developments in Earth Surface Processes, 13, 223-243. https://doi.org/10.1016/S0928-2025(08)10012-8
[4]
Bandeira, A.P.N. and Coutinho, R.Q. (2015) Critical Rainfall Parameters: Proposed Landslide Warning System for the Metropolitan Region of Recife, PE, Brazil. Soils and Rocks, 38, 27-48. https://doi.org/10.28927/SR.381027
[5]
Pampuch, L.A., Negri, R.G., Loikith, P.C. and Bortolozo, C.A. (2023) A Review on Clustering Methods for Climatology Analysis and Its Application over South America. International Journal of Geosciences, 14, 877-894. https://doi.org/10.4236/ijg.2023.149047
[6]
Andrade, M.R.M., Bortolozo, C.A., Carvalho, A.R., Egas, H.M., Garcia, K., Metodiev, D., Nery, T.D., Prieto, C., Pryer, T., Saito, S.M. and Scofield, G. (2023) The SNAKE System: Cemaden’s Landslide Early Warning Mechanism. International Journal of Geosciences, 14, 1146-1159. https://doi.org/10.4236/ijg.2023.1411058
[7]
Moraes, M.V., Pampuch, L.A., Bortolozo, C.A., Mendes, T.S.G., Andrade, M.R.M. and Metodiev, D. (2023) Thresholds of Instability: Precipitation, Landslides, and Early Warning Systems in Brazil. International Journal of Geosciences, 14, 895-912. https://doi.org/10.4236/ijg.2023.1410048
[8]
Metodiev, D., Andrade, M., Mendes, R., Moraes, M., Konig, T., Bortolozo, C.A., Bernardes, T., Luiz, R. and Coelho, J. (2018) Correlation between Rainfall and Mass Movements in North Coast Region of Sao Paulo State, Brazil for 2014-2018. International Journal of Geosciences, 9, 669-679. https://doi.org/10.4236/ijg.2018.912040
[9]
Andrade, M., Mascarenhas, M., Metodiev, D., Mendes, T. and Sant’Ana, G. (2023) Análise da chuva e umidade do solo monitorados pela PCD Geotécnica UR12 COHAB II no desastre de maio de 2022 em Recife/PE. Associação Brasileira de Recursos Hídricos, Viamão.
[10]
Ashby, B., Bortolozo, C.A., Lukyanov, A. and Pryer, T. (2021) Adaptive Modelling of Variably Saturated Seepage Problems. Quarterly Journal of Mechanics and Applied Mathematics, 74, 55-81. https://doi.org/10.1093/qjmam/hbab001
[11]
Sousa, I.A., Bortolozo, C.A., Mendes, T.S.G., Andrade, M.R.M., Dolif, G., Metodiev, D., Pryer, T., Howley, N., Simoes, S.J.C. and Mendes, R.M. (2023) Development of a Soil Moisture Forecasting Method for a Landslide Early Warning System (LEWS): Pilot Cases in Coastal Regions of Brazil. Journal of South American Earth Sciences, 131, Article ID: 104631. https://doi.org/10.1016/j.jsames.2023.104631
[12]
Bortolozo, C.A., Souza, I.A., Andrade, M.R.M., Mendes, T.S.G., Dolif, G., Pryer, T., Simões, S.J.C., Mendes, R.M. and Metodiev, D. (2022) The Development of a Landslide Alert System Based on the Prediction of Soil Moisture in Critical Cities in Brazil—Preliminary Results with the Cemaden’s Observation Network. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1120182
[13]
Andrade, M.R.M., Bortolozo, C.A., Mendes, R.M., Metodiev, D., Moraes, M.A.E., Renk, J., Mendes, T.S.G. and Simoes, S.J.C. (2021) Challenges in Implementing a landslide Warning System Based on Soil Moisture Sensors in a Continental-Sized Country Like Brazil—Preliminary Results. AGU Fall Meeting 2021, New Orleans, 13-17 December 2021.
[14]
Bortolozo, C.A., Mendes, T.S.G., Motta, M.F.B., Simoes, S.J.C., Pryer, T., Metodiev, D., Andrade, M.R.M., Moraes, M.V., Paula, D.S., Bastos, N.J., Pampuch, L.A., Mendes, R.M. and Moraes, M.A.E. (2023) Obtaining 2D Soil Resistance Profiles from the Integration of Electrical Resistivity Data and Standard Penetration Test (SPT) and Light Dynamic Penetrometer (DPL) Resistance Tests. International Journal of Geosciences, 14, 840-854. https://doi.org/10.4236/ijg.2023.149045
[15]
Bortolozo, C.A., Mendes, T.S.G., Egas, H.M., Metodiev, D., Moraes, M.V., Andrade, M.R.M., Pryer, T., Ashby, B., Motta, M.F.B., Simoes, S.J.C., Pampuch, L.A., Mendes, R.M. and Moraes, M.A.E. (2023) Enhancing Landslide Predictability: Validating Geophysical Surveys for Soil Moisture Detection in 2D and 3D Scenarios. Journal of South American Earth Sciences, 132, Article ID: 104664. https://doi.org/10.1016/j.jsames.2023.104664
[16]
Bortolozo, C.A., Simoes, S.J.C., Andrade, M.R.M., Mendes, R.M., Lavalle, L.V.A., Motta, M.F.B., Metodiev, D. and Mendes, T.S.G. (2019) Guara Registro de Software—Número do Pedido: BR 51 2019 002544-0. Revista da Propriedade Industrial, 2549, 15.
[17]
Lavalle, L.V.A., Bortolozo, C.A., Pacheco, T.C.K.F., Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., Metodiev, D., Guedes, M.R.G. and Porsani, J.L. (2018) Evaluation Methodology for Obtaining Geotechnical Parameters Using Electrical Resistivity. First Break, 36, 55-58. https://doi.org/10.3997/1365-2397.n0112
[18]
Rangel, R.C., Porsani, J.L., Bortolozo, C.A. and Hamada, L.R. (2018) Electrical Resistivity Tomography and TDEM Applied to Hydrogeological Study in Taubaté Basin, Brazil. International Journal of Geosciences, 9, 119-130. https://doi.org/10.4236/ijg.2018.92008
[19]
Hamada, L.R., Porsani, J.L., Bortolozo, C.A. and Rangel, R.C. (2018) TDEM and VES Soundings Applied to a Hydrogeological Study in the Central Region of the Taubaté Basin, Brazil. First Break, 36, 49-54. https://doi.org/10.3997/1365-2397.n0111
[20]
Leite, D.N., Bortolozo, C.A., Porsani, J.L., Couto, M.A., Campana, J.D.R., Monteiro Dos Santos, F.A., Rangel, R.C., Hamada, L.R., Sifontes, R.V., Serejo, G. and Stangari, M.C. (2018) Geoelectrical Characterization with 1D VES/TDEM Joint Inversion in Urupês-SP Region, Paraná Basin: Applications to Hydrogeology. Journal of Applied Geophysics, 151, 205-220. https://doi.org/10.1016/j.jappgeo.2018.02.022
[21]
Almeida, E.R., Porsani, J.L., Monteiro dos Santos, F.A. and Bortolozo, C.A. (2017) 2D TEM Modeling for a Hydrogeological Study in the Paraná Sedimentary Basin, Brazil. International Journal of Geosciences, 8, 693-710. https://doi.org/10.4236/ijg.2017.85038
[22]
Bortolozo, C.A., Couto, M.A., Porsani, J.L., Almeida, E.R. and Monteiro Dos Santos, F.A. (2014) Geoelectrical Characterization Using Joint Inversion of VES/TEM Data: A Case Study in Paraná Sedimentary Basin, São Paulo State, Brazil. Journal of Applied Geophysics, 111, 33-46. https://doi.org/10.1016/j.jappgeo.2014.09.009
[23]
Teng W.L., Wang J.R. and Doraiswamy, P.C. (1993) Relationship between Satellite Microwave Radiometric Data, Antecedent Precipitation Index, and Regional Soil Moisture. International Journal of Remote Sensing, 14, 2483-2500. https://doi.org/10.1080/01431169308904287
[24]
Zhao, Y., Wei, F., Yang, H. and Jiang, Y. (2011) Discussion on Using Antecedent Precipitation Index to Supplement Relative Soil Moisture Data Series. Procedia Environmental Sciences, 10, 1489-1495. https://doi.org/10.1016/j.proenv.2011.09.237
[25]
Ma, T., Li, C., Lu, Z. and Wang, B. (2014) An Effective Antecedent Precipitation Model Derived from the Power-Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 216, 187-192. https://doi.org/10.1016/j.geomorph.2014.03.033
[26]
Suribabu, C.R. and Sujatha, E.R. (2019) Evaluation of Moisture Level Using Precipitation Indices as a Landslide Triggering Factor—A Study of Coonoor Hill Station. Climate, 7, Article 111. https://doi.org/10.3390/cli7090111
[27]
Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J., Zhuo, L. and Rong, G. (2019) Estimation of Soil Moisture Using Modified Antecedent Precipitation Index with Application in Landslide Predictions. Landslides, 16, 2381-2393. https://doi.org/10.1007/s10346-019-01255-y
[28]
Schoener, G. and Stone, M.C. (2020) Monitoring Soil Moisture at the Catchment Scale—A Novel Approach Combining Antecedent Precipitation Index and Radar-Derived Rainfall Data. Journal of Hydrology, 589, Article ID: 125155. https://doi.org/10.1016/j.jhydrol.2020.125155
[29]
Ponçano, W.L., Carneiro, C.D.R., Bistrichi, C.A., Almeida, F.F.M. and Prandini, F.L. (1981) Notícia Explicativa do Mapa Geomorfológico do Estado de São Paulo. IPT, São Paulo.
[30]
Bistrichi, C.A., Carneiro, C.D.R., Dantas, A.S.L., Ponçano, W.L., Campanha, G.A.C., Nagata, N., Almeida, M.A., Stein, D.P., Melo, M.S. and Cremoni, O.A. (1981) Geological Map of the São Paulo State IPT/Prominério São Paulo, Scale 1: 5,000,000.
[31]
Bortolozo, C.A., Motta, M.F.B., Andrade, M.R.M., Lavalle, L.V.A., Mendes, R.M., Simões, S.J.C., Mendes, T.S.G. and Pampuch, L.A. (2019) Combined Analysis of Electrical and Electromagnetic Methods with Geotechnical Soundings and Soil Characterization as Applied to a Landslide Study in Campos do Jordão City, Brazil. Journal of Applied Geophysics, 161, 1-14. https://doi.org/10.1016/j.jappgeo.2018.11.017
[32]
Prince, A.E. (2017) O Clima de Campos do Jordão e a Tuberculose no Século XIX. ACTA Geográfica, 11, 57-74. https://doi.org/10.18227/2177-4307.acta.v11i25.4292
[33]
Seluchi, M.E. and Chou, S.C. (2009) Synoptic Patterns Associated with Landslide Events in the Serra do Mar, Brazil. Theoretical and Applied Climatology, 98, 67-77. https://doi.org/10.1007/s00704-008-0101-x
[34]
Bortolozo, C.A., Mendes, T.S.G., Motta, M.F.B., Andrade, M.R.M., Lavalle, L.V.A., Mendes, R.M., Simoes, S.J.C., Metodiev, D. and Renk, J. (2021) Geofísica Aplicada em Estudos de Movimentos de Massa e Engenharia de Pequeno Porte. BOLETIM SBGF, 116, 14.
[35]
Bortolozo, C.A., Andrade, M.R.M., Mendes, R.M., Mendes, T.S.G., Motta, M.F.B., Lavalle, L.V.A., Simoes, S.J.C., Pampuch, L.A., Pryer, T., Legg, A., Ashby, B., Renk, J. and Metodiev, D. (2021b) How DC and FDEM Methods Can Help Reconstruct the 90-Year History of Occupation of an Urban Area in Campos do Jordão, São Paulo—Brazil and Their Applications in Mass Movement Studies. AGU Fall Meeting 2021, New Orleans, 13-17 December 2021.
[36]
Bortolozo, C.A., Lavalle, L.V.A., Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., Metodiev, D., Pacheco, T.C.K.F., Guedes, M.R.G. and Porsani, J.L. (2018) Geophysical Methods to Characterize a Mass Movement Event in Tropical Soils in Campos do Jordão City, Brazil. First Break, 36, 71-73. https://doi.org/10.3997/1365-2397.n0115
[37]
Mendes, R.M., Andrade, M.R.M., Tomasella, J., de Moraes, M.A.E. and Scofield, G.B. (2018) Understanding Shallow Landslides in Campos do Jordão Municipality—Brazil: Disentangling the Anthropic Effects from Natural Causes in the Disaster of 2000. Natural Hazards and Earth System Sciences, 18, 15-30. https://doi.org/10.5194/nhess-18-15-2018
[38]
Mendes, R.M., Valerío Filho, M., Bertoldo, M.A. and da Silva, M.F. (2015) Estudo de limiares críticos de chuva deflagradores de deslizamentos no município de São José dos Campos/SP (Brasil). Territorium, 22, 119-129. https://doi.org/10.14195/1647-7723_22_8
[39]
Lavalle, L.V.A., Stabile, R.A., Bortolozo, C.A., Mendes, R.M., Garcia, J.V.C., Motta, M.F.B., Andrade, M.R.M., Pacheco, T.C.K.F. and Metodiev, D. (2018) Environmental Data Observation System—Solam for Analysis and Interpretation of Soil Moisture Variation and Precipitation Indexes. International Journal of Geosciences, 9, 658-667. https://doi.org/10.4236/ijg.2018.911039
[40]
Ali, S., Ghosh, N.C. and Singh, R. (2010) Rainfall-Runoff Simulation Using a Normalized Antecedent Precipitation Index. Hydrological Science Journal, 55, 266-274. https://doi.org/10.1080/02626660903546175
Kohler, M.A. and Linsley Jr., R.K. (1951) Predicting Runoff from Storm Rainfall. Weather Bureau, Washington DC.
[43]
Singh, V.P. (1989) Hydrologic Systems Watershed Modeling. Prentice-Hall, Englewood Cliffs.
[44]
Crozier, M. and Eyles, R. (1980) Assessing the Probability of Rapid Mass Movement. In: Third Australia-New Zealand Conference on Geomechanics: Wellington, May 12-16 1980, Institution of Professional Engineers New Zealand, Wellington, NZ, 2-47-2-51. https://search.informit.org/doi/10.3316/informit.649149381088316