全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Displacement and Extension due to Reverse Drag of Normal Faults: Forward Method

DOI: 10.4236/ijg.2024.151003, PP. 25-39

Keywords: Fault Rotation, Fault Drag, Fault Displacement, Extension, Forward Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (Dt2) is the largest, that on the horizontal base (Dt1) is moderate, and that on the antithetic base (Dt3) is the smallest. On the other hand, the value of (Dt1) is larger than the displacement for the vertical shear (Dt4). The value of (Dt1) is larger than or less than the displacement for the inclined shear (Dt5) depending on the original fault dip δ0, bedding angle θ, and the angle of shear direction β.

References

[1]  Anderson, E.M. (1951) The Dynamic of Faulting and Dyke Formation. Oliver and Boyd, Edinburgh, 206 p.
[2]  Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007) Fundamentals of Rock Mechanics. Blackwell Publishing, Hoboken.
[3]  Sibson, R.H. (1985) A Note on Fault Reactivation. Journal of Structural Geology, 7, 751-754.
https://doi.org/10.1016/0191-8141(85)90150-6
[4]  Hamblin, W.K. (1965) Origin of “Reverse Drag” on the Downthrown Side of Normal Faults. Bulletin of the Geological Society of America, 76, 1145-1164.
https://doi.org/10.1130/0016-7606(1965)76[1145:OORDOT]2.0.CO;2
[5]  Schlische, R.W. (1995) Geometry and Origin of Fault-Related Folds in Extensional Settings. AAPG Bulletin, 79, 1661-1678.
https://doi.org/10.1306/7834DE4A-1721-11D7-8645000102C1865D
[6]  Johnson, A.M. (1970) Physical Processes in Geology. Freeman, Cooper and Co., San Francisco, 577 p.
[7]  Mitra, S. (1993) Geometry and Kinematic Evolution of Inversion Structures. AAPG Bulletin, 77, 1159-1191.
https://doi.org/10.1306/BDFF8E2A-1718-11D7-8645000102C1865D
[8]  Patton, T.L. (2004) Numerical Models of Growth-Sediment Development above an Active Monocline. Basin Research, 16, 25-39.
https://doi.org/10.1111/j.1365-2117.2003.00220.x
[9]  Rykkelid, E. and Fossen, H. (2002) Layer Rotation around Vertical Fault Overlap Zones: Observations from Seismic Data, Field Examples, and Physical Experiments. Marine and Petroleum Geology, 19, 181-192.
https://doi.org/10.1016/S0264-8172(02)00007-7
[10]  Davis, G.H. (1984) Structural Geology of Rocks and Regions. John Wiley and Sons, New York, 592 p.
[11]  Reches, Z. and Eidelman, A. (1995) Drag along Faults. Tectonophysics, 247, 145-156.
https://doi.org/10.1016/0040-1951(94)00170-E
[12]  Grasemann, B., Martel, S. and Passchier, C. (2005) Reverse and Normal Drag along a Fault. Journal of Structural Geology, 27, 999-1010.
https://doi.org/10.1016/j.jsg.2005.04.006
[13]  Brandes, C. and Tanner, D.C. (2014) Fault-Related Folding: A Review of Kinematic Models and Their Application. Earth-Science Reviews, 138, 352-370.
https://doi.org/10.1016/j.earscirev.2014.06.008
[14]  Homberg, C., Schnyder, J., Roche, V., Leonardi, V. and Benzaggagh, M. (2017) The Brittle and Ductile Components of Displacement along Fault Zones. Geological Society, London, Special Publications, 439, 395-412.
https://doi.org/10.1144/SP439.21
[15]  Delogkos, E., Saqab, M.M., Walsh, J.J., Roche, V. and Childs, C. (2020) Throw Variations and Strain Partitioning Associated with Fault-Bend Folding along Normal Faults. Solid Earth, 11, 935-945.
https://doi.org/10.5194/se-11-935-2020
[16]  Withjack, M.O., Islam, Q.T. and La Pointe, P.R. (1995) Normal Faults and Their Hanging-Wall Deformation: An Experimental Study. AAPG Bulletin, 79, 1-17.
https://doi.org/10.1306/8D2B1494-171E-11D7-8645000102C1865D
[17]  Ferrill, D.A., Morris, A.P., Sims, D.W., Waiting, D.J. and Hasegawa, S. (2005) Development of Synthetic Layer Dip Adjacent to Normal Faults. In: Sorkhabi, R. and Tsuji, Y., Eds., Faults, Fluid Flow, and Petroleum Traps, American Association of Petroleum Geologists, Tulsa, Memoirs, No. 85, 125-138.
[18]  Tearpock, D.J. and Bischke, R.E. (2003) Applied Subsurface Geological Mapping. Prentice Hall, Hoboken.
[19]  Hesthammer, J. and Fossen, H. (2000) Uncertainties Associated with Fault Sealing Analysis. Petroleum Geoscience, 6, 37-45.
https://doi.org/10.1144/petgeo.6.1.37
[20]  Chen, Y.G., Lai, K.Y., Lee, Y.H., Suppe, J., Chen, W.S., Lin, Y.N.N., Wang, Y., Hung, J.H. and Kuo, Y.T. (2007) Coseismic Fold 315 Scarps and Their Kinematic Behavior in the 1999 Chi-Chi Earthquake Taiwan Region. Journal of Geophysical Research: Solid Earth, 112, B03S02.
https://doi.org/10.1029/2006JB004388
[21]  Axen, G.J. (1988) The Geometry of Planar Domino-Style Normal Faults above a Dipping Basal Detachment. Journal of Structural Geology, 10, 405-411.
https://doi.org/10.1016/0191-8141(88)90018-1
[22]  Westaway, R. and Kusznir, N. (1993) Fault and Bed “Rotation” during Continental Extension: Block Rotation or Vertical Shear? Journal of Structural Geology, 16, 753-770.
https://doi.org/10.1016/0191-8141(93)90060-N
[23]  Xu, S.S., Nieto-Samaniego, A.F. and Alaniz-álvarez, S.A. (2004) Tilting Mechanism in Domino Faults of the Sierra de San Miguelito, Central Mexico. Geologica Acta, 3, 189-201.
[24]  White, N.J., Jackson, J.A. and Mckenzie, D.P. (1986) The Relationship between the Geometry of Normal Faults and That of the Sedimentary Layers in Their Hanging Walls. Journal of Structural Geology, 8, 879-909.
https://doi.org/10.1016/0191-8141(86)90035-0
[25]  Poblet, J. and Bulnes, M. (2005) Fault-Slip, Bed-Length and Area Variations in Experimental Rollover Anticlines over Listric Normal Faults: Influence in Extension and Depth to Detachment Estimations. Tectonophysics, 396, 97-117.
https://doi.org/10.1016/j.tecto.2004.11.005
[26]  Kautz, S.A. and Sclater, J.G. (1988) Internal Deformation in Clay Models of Extension by Block Faulting. Tectonics, 7, 823-832.
https://doi.org/10.1029/TC007i004p00823

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133