Electrical impedance tomography (EIT) aims to reconstruct the
conductivity distribution using the boundary measured voltage potential.
Traditional regularization based method would suffer from error propagation due
to the iteration process. The statistical inverse problem method uses statistical
inference to estimate unknown parameters. In this article, we develop a
nonlinear weighted anisotropic total variation (NWATV) prior density function
based on the recently proposed NWATV regularization method. We calculate the
corresponding posterior density function, i.e.,
the solution of the EIT inverse problem in the statistical sense, via a
modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment
to validate the proposed approach.
References
[1]
Cheney, M., Isaacson, D. and Newell, J.C. (1999) Electrical Impedance Tomography. SIAM Review, 41, 85-101. https://doi.org/10.1137/S0036144598333613
[2]
Kaipio, J.P., Kolehmainen, V., Somersalo, E. and Vauhkonen, M. (2000) Statistical Inversion and Monte Carlo Sampling Methods in Electrical Impedance Tomography. Inverse Problems, 16, 1487-1522. https://doi.org/10.1088/0266-5611/16/5/321
[3]
Lassas, M. and Siltanen, S. (2004) Can One Use Total Variation Prior for Edge- Preserving Bayesian Inversion? Inverse Problems, 20, 1537-1563.
https://doi.org/10.1088/0266-5611/20/5/013
[4]
Somersalo, E., Kaipio, J.P., Vauhkonen, M., Baroudi, D. and Jarvenpaa, S. (1997) Impedance Imaging and Markov Chain Monte Carlo Methods. Proc SPIE’s 42nd Annual Meeting, Computational, Experimental and Numerical Methods for Solving Illposed Inverse Imaging Problems: Medical and Nonmedical Applications, San Diego, USA, June 27-August 1, 1997, 175-185.
[5]
Kolehmainen, V., Somersalo, E., Vauhkonen, P.J., Vauhkonen, M. and Kaipio, J.P. (1998) A Bayesian Approach and Total Variation Priors in 3D Electrical Impedance Tomography. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, 1028-1031.
[6]
Song, Y., Wang, Y. and Liu, D. (2022) A Nonlinear Weighted Anisotropic Total Variation Regularization for Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 71, 1-13.
https://doi.org/10.1109/TIM.2022.3220288
[7]
Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov Chain Monte Carlo in Practice. Chapman and Hall, London. https://doi.org/10.1201/b14835
[8]
Hastings, W.K. (1970) Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
[9]
Adler, A. and Lionheart, W.R. (2006) Uses and Abuses of EIDORS: An Extensible Software Base for EIT. Physiological Measurement, 27, S25-S42.
https://doi.org/10.1088/0967-3334/27/5/S03
[10]
Vauhkonen, M., Vadász, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P. (1998) Tikhonov Regularization and Prior Information in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 17, 285-293.
https://doi.org/10.1109/42.700740