全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群及其代谢物在放射性肠炎中的研究进展
Research Progress of Intestinal Flora and Their Metabolites in Radiation Enteritis

DOI: 10.12677/ACM.2024.141226, PP. 1571-1578

Keywords: 放射性肠炎,肠道菌群,肠道菌群代谢物,短链脂肪酸,胆汁酸
Radiation Enteritis
, Intestinal Flora, Intestinal Flora Metabolites, Short-Chain Fatty Acids, Bile Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射性肠炎是盆腔放疗后的一种常见并发症,严重影响患者的生活质量。近年来,众多研究已经证实肠道菌群失调在放射性肠炎发生发展中起着重要作用。通过调节肠道菌群来治疗放射性肠炎的研究也较多,如补充益生元或益生菌、使用抗生素减少病原菌、肠道菌群移植等。此外,研究还发现,菌群代谢物作为菌群与宿主的纽带影响着放射性肠炎的发生发展,这些代谢物包括短链脂肪酸、胆汁酸以及色氨酸代谢物等。下面将以肠道菌群及其代谢物在放射性肠炎中的研究进展进行综述。
Radiation enteritis is a common complication after pelvic radiotherapy, which seriously affects the quality of life of patients. In recent years, many studies have confirmed that intestinal flora imbal-ance plays an essential role in the occurrence and development of radiation enteritis. There are also many studies on treating radiation enteritis by regulating intestinal flora, such as supplementing prebiotics or probiotics, using antibiotics to reduce pathogens, and transplanting intestinal flora. In addition, the study also found that bacterial community metabolites, including short-chain fatty ac-ids, bile acids, and tryptophan metabolites, as a link between the bacterial community and the host, affect the occurrence and development of radiation enteritis. The research progress of intestinal flora and their metabolites in radiation enteritis will be reviewed below.

References

[1]  Delaney, G., Jacob, S., Featherstone, C., et al. (2005) The Role of Radiotherapy in Cancer Treatment. Cancer, 104, 1129-1137.
https://doi.org/10.1002/cncr.21324
[2]  Gami, B., Harrington, K., Blake, P., et al. (2003) How Patients Manage Gastrointestinal Symptoms after Pelvic Radiotherapy. Alimentary Pharmacology & Therapeutics, 18, 987-994.
https://doi.org/10.1046/j.1365-2036.2003.01760.x
[3]  Kuku, S., Fragkos, C., Mccormack, M., et al. (2013) Radi-ation-Induced Bowel Injury: The Impact of Radiotherapy on Survivorship after Treatment for Gynaecological Cancers. British Journal of Cancer, 109, 1504-1512.
https://doi.org/10.1038/bjc.2013.491
[4]  Andreyev, J. (2007) Gastrointestinal Symptoms after Pelvic Radiothera-py: A New Understanding to Improve Management of Symptomatic Patients. The Lancet Oncology, 8, 1007-1017.
https://doi.org/10.1016/S1470-2045(07)70341-8
[5]  Barraclough, L.H., Routledge, J.A., Farnell, D.J., et al. (2012) Prospective Analysis of Patient-Reported Late Toxicity Following Pelvic Radiotherapy for Gynaecological Cancer. Radi-otherapy and Oncology, 103, 327-332.
https://doi.org/10.1016/j.radonc.2012.04.018
[6]  中华医学会外科学分会结直肠外科学组, 中国医师协会外科医师分会结直肠外科医师委员会, 中国抗癌协会大肠癌专业委员会. 中国放射性直肠损伤多学科诊治专家共识(2021版) [J]. 中华胃肠外科杂志, 2021, 24(11): 937-949.
[7]  Kwak, S.Y., Park, S., Kim, H., et al. (2021) Atorvas-tatin Inhibits Endothelial PAI-1-Mediated Monocyte Migration and Alleviates Radiation-Induced Enteropathy. Interna-tional Journal of Molecular Sciences, 22, Article No. 1828.
https://doi.org/10.3390/ijms22041828
[8]  Moraitis, I., Guiu, J. and Rubert, J. (2023) Gut Microbiota Controlling Radiation-Induced Enteritis and Intestinal Regeneration. Trends in Endocrinology & Metabolism, 34, 489-501.
https://doi.org/10.1016/j.tem.2023.05.006
[9]  Cui, Y., Wu, H., Liu, Z., et al. (2023) CXCL16 Inhibits Epithelial Regeneration and Promotes Fibrosis during the Progression of Radiation Enteritis. The Journal of Pathology, 259, 180-193.
https://doi.org/10.1002/path.6031
[10]  Kwak, S.Y., Jang, W.I., Lee, S.B., et al. (2022) Centella asiati-ca-Derived Endothelial Paracrine Restores Epithelial Barrier Dysfunction in Radiation-Induced Enteritis. Cells, 11, Article No. 2544.
https://doi.org/10.3390/cells11162544
[11]  Yang, L., Fang, C., Song, C., et al. (2023) Mesenchymal Stem Cell-Derived Exosomes Are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5(+) Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Engineering and Re-generative Medicine, 20, 739-751.
https://doi.org/10.1007/s13770-023-00541-0
[12]  Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
https://doi.org/10.1371/journal.pbio.1002533
[13]  Turnbaugh, P.J., Quince, C., Faith, J.J., et al. (2010) Organismal, Genetic, and Transcriptional Variation in the Deeply Sequenced Gut Microbiomes of Identical Twins. Proceedings of the National Academy of Sciences of the United States of America, 107, 7503-7508.
https://doi.org/10.1073/pnas.1002355107
[14]  Tap, J., Mondot, S., Levenez, F., et al. (2009) Towards the Human Intestinal Microbiota Phylogenetic Core. Environmental Microbiology, 11, 2574-2584.
https://doi.org/10.1111/j.1462-2920.2009.01982.x
[15]  Alm, E.J., Friedman, J. and Smillie, C.S. (2013) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214.
https://doi.org/10.1038/nature11234
[16]  Kho, Z.Y. and Lal, S.K. (2018) The Human Gut Microbiome—A Poten-tial Controller of Wellness and Disease. Frontiers in Microbiology, 9, Article No. 1835.
https://doi.org/10.3389/fmicb.2018.01835
[17]  Tang, W.H., Kitai, T. and Hazen, S.L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 120, 1183-1196.
https://doi.org/10.1161/CIRCRESAHA.117.309715
[18]  Crawford, P.A. and Gordon, J.I. (2005) Microbial Reg-ulation of Intestinal Radiosensitivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 13254-13259.
https://doi.org/10.1073/pnas.0504830102
[19]  Wang, Z., Wang, Q., Wang, X., et al. (2019) Gut microbial Dysbiosis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radio-therapy. Journal of Cellular and Molecular Medicine, 23, 3747-3756.
https://doi.org/10.1111/jcmm.14289
[20]  Nam, Y.D., Kim, H.J., Seo, J.G., et al. (2013) Impact of Pelvic Radio-therapy on Gut Microbiota of Gynecological Cancer Patients Revealed by Massive Pyrosequencing. PLOS ONE, 8, e82659.
https://doi.org/10.1371/journal.pone.0082659
[21]  Liu, L., Chen, C., Liu, X., et al. (2021) Altered Gut Microbiota Associated with Hemorrhage in Chronic Radiation Proctitis. Frontiers in Oncology, 11, Article ID: 637265.
https://doi.org/10.3389/fonc.2021.637265
[22]  Yang, Q., Qin, B., Hou, W., et al. (2023) Pathogenesis and Therapy of Radiation Enteritis with Gut Microbiota. Frontiers in Pharmacology, 14, Article ID: 1116558.
https://doi.org/10.3389/fphar.2023.1116558
[23]  Manichanh, C., Borruel, N., Casellas, F., et al. (2012) The Gut Microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9, 599-608.
https://doi.org/10.1038/nrgastro.2012.152
[24]  Zhao, Z., Cheng, W., Qu, W., et al. (2020) Antibiotic Alleviates Radiation-Induced Intestinal Injury by Remodeling Microbiota, Reducing Inflammation, and Inhibiting Fibrosis. ACS Omega, 5, 2967-2977.
https://doi.org/10.1021/acsomega.9b03906
[25]  The Human Microbiome Project Consortium (2012) Structure, Function and Diversity of the Healthy Human Microbiome. Nature, 486, 207-214.
https://doi.org/10.1038/nature11234
[26]  Derrien, M., Belzer, C. and de Vos, W.M. (2017) Akkermansia mucini-phila and Its Role in Regulating Host Functions. Microbial Pathogenesis, 106, 171-181.
https://doi.org/10.1016/j.micpath.2016.02.005
[27]  Garcia-Peris, P., Velasco, C., Hernandez, M., et al. (2016) Ef-fect of Inulin and Fructo-Oligosaccharide on the Prevention of Acute Radiation Enteritis in Patients with Gynecological Cancer and Impact on Quality-of-Life: A Randomized, Double-Blind, Placebo-Controlled Trial. European Journal of Clinical Nutrition, 70, 170-174.
https://doi.org/10.1038/ejcn.2015.192
[28]  García-Peris, P., Velasco, C., Lozano, M.A., et al. (2012) Effect of a Mixture of Inulin and Fructo-Oligosaccharide on Lactobacillus and Bifidobacterium Intestinal Microbiota of Patients Re-ceiving Radiotherapy: A Randomised, Double-Blind, Placebo-Controlled Trial. Nutricion Hospitalaria, 27, 1908-1915.
[29]  Li, Y., Dong, J., Xiao, H., et al. (2021) Caloric Restriction Alleviates Radiation Injuries in a Sex-Dependent Fashion. FASEB Journal, 35, e21787.
https://doi.org/10.1096/fj.202100351RR
[30]  Lee, S.U., Jang, B.S., Na, Y.R., et al. (2023) Effect of Lactobacillus rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics and Antimicrobial Proteins.
https://doi.org/10.1007/s12602-023-10071-9
[31]  Sahakitrungruang, C., Patiwongpaisarn, A., Kanjanasilp, P., et al. (2012) A Randomized Controlled Trial Comparing Colonic Irrigation and Oral Antibiotics Administration versus 4% Formalin Application for Treatment of Hemorrhagic Radiation Proctitis. Diseases of the Colon & Rectum, 55, 1053-1058.
https://doi.org/10.1097/DCR.0b013e318265720a
[32]  He, B., Liu, Y., Hoang, T.K., et al. (2019) Antibi-otic-Modulated Microbiome Suppresses Lethal Inflammation and Prolongs Lifespan in Treg-Deficient Mice. Microbiome, 7, Article No. 145.
https://doi.org/10.1186/s40168-019-0751-1
[33]  Guo, H., Chou, W.C., Lai, Y., et al. (2020) Multi-Omics Analyses of Radiation Survivors Identify Radioprotective Microbes and Metabolites. Science, 370, eaay9097.
https://doi.org/10.1126/science.aay9097
[34]  Liu, T., Su, D., Lei, C., et al. (2023) Treatment of Radiation Enteritis with Fecal Transplantation. The American Surgeon, 89, 2999-3001.
https://doi.org/10.1177/00031348221091954
[35]  Ding, X., Li, Q., Li, P., et al. (2020) Fecal Microbiota Trans-plantation: A Promising Treatment for Radiation Enteritis? Radiotherapy and Oncology, 143, 12-18.
https://doi.org/10.1016/j.radonc.2020.01.011
[36]  Zheng, Y.M., He, X.X., Xia, H.X., et al. (2020) Multi-Donor Multi-Course Faecal Microbiota Transplantation Relieves the Symptoms of Chronic Hemorrhagic Radiation Proctitis: A Case Report. Medicine, 99, e22298.
https://doi.org/10.1097/MD.0000000000022298
[37]  Tierney, B., Yang, Z., Luber, J., et al. (2019) The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host & Microbe, 26, 283-295.
https://doi.org/10.1016/j.chom.2019.07.008
[38]  Hooper, L.V. and Gordon, J.I. (2001) Commensal Host-Bacterial Relationships in the Gut. Science, 292, 1115-1118.
https://doi.org/10.1126/science.1058709
[39]  Jeremy, K., et al. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267.
https://doi.org/10.1126/science.1223813
[40]  Zheng, X., Xie, G., Zhao, A., et al. (2011) The Footprints of Gut Microbial-Mammalian Co-Metabolism. Journal of Proteome Research, 10, 5512-5522.
https://doi.org/10.1021/pr2007945
[41]  Yang, W. and Cong, Y. (2021) Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cellular & Molecular Immunology, 18, 866-877.
https://doi.org/10.1038/s41423-021-00661-4
[42]  Koh, A., De Vadder, F., Kovatcheva-Datchary, P., et al. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041
[43]  Li, Y., Dong, J., Xiao, H., et al. (2020) Gut Commensal De-rived-Valeric Acid Protects against Radiation Injuries. Gut Microbes, 11, 789-806.
https://doi.org/10.1080/19490976.2019.1709387
[44]  Li, Y., Xiao, H., Dong, J., et al. (2020) Gut Microbiota Me-tabolite Fights against Dietary Polysorbate 80-Aggravated Radiation Enteritis. Frontiers in Microbiology, 11, Article No. 1450.
https://doi.org/10.3389/fmicb.2020.01450
[45]  Agus, A., Richard, D., Fa?s, T., et al. (2021) Propionate Ca-tabolism by CD-Associated Adherent-Invasive E. coli Counteracts Its Anti-Inflammatory Effect. Gut Microbes, 13, Arti-cle ID: 1839318.
https://doi.org/10.1080/19490976.2020.1839318
[46]  Tong, L.C., Wang, Y., Wang, Z.B., et al. (2016) Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflamma-tion and Oxidative Stress. Frontiers in Pharmacology, 7, Article No. 253.
https://doi.org/10.3389/fphar.2016.00253
[47]  Li, G., Lin, J., Zhang, C., et al. (2021) Microbiota Metabolite Butyr-ate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Mi-crobes, 13, Article ID: 1968257.
https://doi.org/10.1080/19490976.2021.1968257
[48]  Korsten, S., Peracic, L., van Groeningen, L., et al. (2022) Butyrate Prevents Induction of CXCL10 and Non-Canonical IRF9 Expression by Activated Human Intestinal Epithelial Cells via HDAC Inhibition. International Journal of Molecular Sciences, 23, Article No. 3980.
https://doi.org/10.3390/ijms23073980
[49]  Yuille, S., Reichardt, N., Panda, S., et al. (2018) Human Gut Bacteria as Potent Class I Histone Deacetylase Inhibitors in Vitro through Production of Butyric Acid and Valeric Acid. PLOS ONE, 13, e201073.
https://doi.org/10.1371/journal.pone.0201073
[50]  de Aguiar, V.T., Tarling, E.J. and Edwards, P.A. (2013) Plei-otropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669.
https://doi.org/10.1016/j.cmet.2013.03.013
[51]  Collins, S.L., Stine, J.G., Bisanz, J.E., et al. (2023) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247.
https://doi.org/10.1038/s41579-022-00805-x
[52]  Sorrentino, G., Perino, A., Yildiz, E., et al. (2020) Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology, 159, 956-968.
https://doi.org/10.1053/j.gastro.2020.05.067
[53]  Jian, Y.P., Yang, G., Zhang, L.H., et al. (2022) Lactobacillus plantarum Alleviates Irradiation-Induced Intestinal Injury by Activation of FXR-FGF15 Signaling in Intestinal Epithelia. Journal of Cellular Physiology, 237, 1845-1856.
https://doi.org/10.1002/jcp.30651
[54]  Yang, J.Y., Liu, M.J., Lv, L., et al. (2022) Metformin Alleviates Irradia-tion-Induced Intestinal Injury by Activation of FXR in Intestinal Epithelia. Frontiers in Microbiology, 13, Article ID: 932294.
https://doi.org/10.3389/fmicb.2022.932294
[55]  Li, W., Lin, Y., Luo, Y., et al. (2021) Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/Progenitor Cell Apoptosis. Nutrients, 13, Article No. 2910.
https://doi.org/10.3390/nu13092910
[56]  Lin, Y., Xia, P., Cao, F., et al. (2023) Protective Effects of Activated Vitamin D Receptor on Radiation-Induced Intestinal Injury. Journal of Cellular and Molecular Medicine, 27, 246-258.
https://doi.org/10.1111/jcmm.17645
[57]  Xiao, H.W., Cui, M., Li, Y., et al. (2020) Gut Microbiota-Derived Indole 3-Propionic Acid Protects against Radiation Toxicity via Retaining acyl-CoA-Binding Protein. Microbiome, 8, Article No. 69.
https://doi.org/10.1186/s40168-020-00845-6
[58]  Thotala, D., Chetyrkin, S., Hudson, B., et al. (2009) Pyridoxa-mine Protects Intestinal Epithelium from Ionizing Radiation-Induced Apoptosis. Free Radical Biology and Medicine, 47, 779-785.
https://doi.org/10.1016/j.freeradbiomed.2009.06.020
[59]  Kaur, H., Ali, S.A., Short, S.P., et al. (2023) Identifica-tion of a Functional Peptide of a Probiotic Bacterium-Derived Protein for the Sustained Effect on Preventing Colitis. Gut Microbes, 15, Article ID: 2264456.
https://doi.org/10.1080/19490976.2023.2264456
[60]  Wang, S., Xiang, L., Li, F., et al. (2023) Butyrate Protects against Clostridium difficile Infection by Regulating Bile Acid Metabolism. Microbiology Spectrum, 11, e447922.
https://doi.org/10.1128/spectrum.04479-22
[61]  Suez, J., Zmora, N., Segal, E., et al. (2019) The Pros, Cons, and Many Unknowns of Probiotics. Nature Medicine, 25, 716-729.
https://doi.org/10.1038/s41591-019-0439-x
[62]  Xie, A., Ji, H., Liu, Z., et al. (2023) Modified Prebiotic-Based “Shield” Armed Probiotics with Enhanced Resistance of Gastrointestinal Stresses and Prolonged Intestinal Retention for Synergistic Alleviation of Colitis. ACS Nano, 17, 14775-14791.
https://doi.org/10.1021/acsnano.3c02914
[63]  Liu, D., Wei, M., Yan, W., et al. (2023) Potential Applications of Drug Delivery Technologies against Radiation Enteritis. Expert Opinion on Drug Delivery, 20, 435-455.
https://doi.org/10.1080/17425247.2023.2183948

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133