|
云南思茅机场一次强对流天气过程诊断分析
|
Abstract:
本文利用云南国家观测站的降水数据和FNL再分析数据,对2022年7月7日在云南省思茅机场发生的一次强对流天气过程进行了诊断分析。研究结果表明,这次思茅机场的强对流天气过程突发且持续时间较长,还伴有频繁的雷电活动,对航空运输造成了较大影响。此次强对流天气的主要影响天气系统是中高层的槽线和地面的锋面系统。思茅机场上空水汽辐合显著,为降水的发生和发展提供了有利的水汽条件。与此同时,低空辐合和高空辐散产生的抽吸作用增强并维持了垂直上升运动,为强对流的发生和发展提供了有利的动力条件。西北向东南方向移动的干冷空气加强了思茅机场南北向的温度梯度,使得冷暖空气交汇明显,使大气层结不稳定度进一步增大,为强对流天气的形成和发展提供了热力不稳定条件。思茅地区近地层的逆温层,积累了不稳定能量,持续的西南风输送了大量暖湿气流,为强对流天气的发生和发展提供了高温高湿的不稳定条件。
Based on the precipitation data of Yunnan national observation station and FNL reanalysis data provided by NCEP, this paper diagnosed and analyzed a strong convective weather process that oc-curred at Simao Airport in Yunnan Province on July 7,2022. The results show that the strong con-vective weather process in Simao Airport area has the characteristics of sudden strong and long duration, accompanied by frequent lightning activities, which has a great impact on air transport. The trough line appearing in the middle and upper layers and the front system on the ground are the main influencing weather systems of this strong convection. The water vapor convergence over Simao Airport is more significant, which provides favorable water vapor conditions for the occur-rence and development of precipitation. At the same time, the low-level convergence in the Simao Airport area and the suction effect generated by the high-altitude divergence are conducive to the strengthening and maintenance of the vertical upward movement, which provides a more favorable dynamic condition for the occurrence and development of strong convection. The dry and cold air moving from northwest to southeast strengthens the north-south temperature gradient in Simao Airport area, and the intersection of cold and warm air is more significant, which further increases the instability of atmospheric stratification and provides thermal instability conditions for the for-mation and development of severe convective weather. The inversion layer appearing in the surface layer of Simao area makes the unstable energy accumulate, and the continuous southwest wind transports a large amount of warm and humid airflow for the precipitation area, which provides the unstable conditions of high temperature and high humidity for the occurrence and development of strong convective weather.
[1] | 张腾飞, 段旭, 张杰, 等. 云南强对流暴雨的闪电和雷达回波特征及相关性[J]. 热带气象学报, 2011, 27(3): 379-386. |
[2] | 鲁亚斌, 李华宏, 闵颖, 等. 一次云南强对流暴雨的中尺度特征分析[J]. 气象, 2018, 44(5): 645-654. |
[3] | 郑媛媛, 姚晨. 不同类型大尺度环流背景下强对流天气的短时临近预报预警研究[J]. 气象, 2011, 37(7): 795-801. |
[4] | 陶岚, 严红梅. 2004-2011上海31次雷雨大风过程环境特征分析[C]//中国气象学会. 强化科技基础 推进气象现代化——第29届中国气象学会年会: 2012年卷. 2012: 2099-2108. |
[5] | 段炼, 张鹏, 吴俊杰, 等. 利用FY_2G卫星资料对上海机场一次雷暴的过程分析[J]. 民航学报, 2018, 2(5): 96-99. |
[6] | Doswell Ⅲ, C.A. (1996) Flash Flood Forecasting: An Ingredients-Based Methodology. Weather and Forecasting, 11, 560-581. https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2 |
[7] | Zhai, P.M., Zhang, X.B., Wan, H., et al. (2005) Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. Journal of Climate, 18, 1096-1107. https://doi.org/10.1175/JCLI-3318.1 |
[8] | 邱磊. 雷雨季节管制员如何协助机组绕飞雷雨[J]. 电子测试, 2015(15): 161-162. |
[9] | 王珏, 梁琪瑶, 易伟霞, 等. 一次区域性暴雨过程综合诊断分析[J]. 气象与环境科学, 2009, 32(3): 10-14. |
[10] | 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 第4版. 北京: 气象出版社, 2000: 385-400. |