Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha-1) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha-1) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha-1) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg-1 after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization.
Wong, M.T.E. and Swift, R.S. (1995) Amelioration of Aluminium Phytotoxicity with Organic Matter. In: Date, R.A., et al., Eds., Plant-Soil Interactions at Low pH: Principles and Management. Developments in Plant and Soil Sciences, Vol. 64, Springer, Dordrecht, 41-45. https://doi.org/10.1007/978-94-011-0221-6_4
[3]
Anago, F.O., Cossi T.B., Dagbenonbakin, G. and Amadji, G. (2023) Guide Pratique de Gestion de la Fertilité des Sols sous Riziculture Pluvial (Oryza sativa).
[4]
Gueye, H., Sall, A.T., Keita, B.G., N’Diaye, S., Dieng, H. and Gueye, T. (2019) Effet de la Fertilisation Minérale sur la Culture du Riz (Oryza sativa L.) et du blé dur (Triticum durum Desf.) dans la Vallée du Fleuve Sénégal. Journal of Animal and Plant Sciences, 41, 6840-6846. https://doi.org/10.35759/JAnmPlSci.v41-1.10
[5]
Koné, B. (2014) Sustaining Rice Production in Tropical Africa: Coping with Rice Yield Gape and Declining Yield. Lap Lambert Publishing.
[6]
Yao, G.F., Koné, B., Yoboué, K.E., Kassin, K.E., Akassimadou, E.F., Kouadio, K.K. H., Kouassi, K.N. and Yao-Kouamé, A. (2014) Growth and Yield of An Interspecific (Oryza sativa × Oryza glaberrima) Rice Cultivar as Affected by Phosphorus and Calcium Effects on Acid Ferralsol. International Journal of Applied Engineering Research, 9, 6031-6044.
[7]
Konan, K.F. (2013) Diagnostic Minéral D’un Sol De Bas-Fond Secondaire Développé Sur Matériaux Granito-Gnessiques En Région Centre De La Cote d’Ivoire: Essai Comportementalde Riziculture Irrigué. DEA en Science de la terre, Université Felix Houphouet Boigny, Abidjan, 70.
[8]
Blackshaw, R.E., Brant, R.N. and Grant, C.A. (2003) Differential Response of Weed Species to Added Nitrogen. Weed Science, 51, 532-539. https://doi.org/10.1614/0043-1745(2003)051[0532:DROWST]2.0.CO;2
[9]
N’ganzoua, K.R., Kone, B., Konan, K.F., Zadi, F., Traore, M.J., Yao-Kouame, A., Dick, A.E. and Kone, D. (2016) Variations of Rainfall and Air Temperature Affecting Rainfed Rice Growth and Yield in a Guinea Savanna Zone. Journal of Agriculture and Environmental Sciences, 5, 65-77.
[10]
ADRAO (2006) Centre du Riz pour l’Afrique, 2006. Toxicité dans les Systèmes à Base de Riz d’Afrique de l’Ouest. Cotonou, Bénin.
[11]
Gee, G.W. and Bauder, J.W. (1986) Particle-Size Analysis. In: Klute, A., Ed., Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd Edition, American Society of Agronomy/Soil Science Society of America, Madison, WI, 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
[12]
Anderson J.M. and Ingram, S.J. (1993) Tropical Soil Biology and Fertility. A Handbook of Methods. 2nd Edition, Oxford University Press, Oxford.
[13]
Pansu, M. and Gautheyrou, J. (2003) Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer-Verlag, Berlin, 993 p.
[14]
Walkley A. and Black, A. (1934) Etude de la méthode DEGT JAREFF pour le dosage de la matière organique, modification apportée au dosage de l’acide chromique. Soil Science, 37, 29-38.
[15]
Bremner, J.M. (1996) Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, WI, 1085-1122. https://doi.org/10.2136/sssabookser5.3.c37
[16]
Dabin, B. (1967) Méthode Olsen modifiée. Cahier ORSTOM, Pédologie, 3-5.
[17]
Jackson, W.A. (1967) Physiological Effects of Soil Acidity. In: Pearson, R.W. and Adams, F., Eds., Soil Acidity and Liming, American Society of Agronomy, 43-124.
[18]
Thomas, G.W. (1982) Exchangeable Cations. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soils Analysis. Part 2: Chemical and Microbiological Properties, 2nd Edition, American Society of Agronomy, Soil Science Society of America, Madison, WI, 159-164.
[19]
Lindsay, W.L. and Norvell, W.A. (1978) Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper1. Soil Science Society American Journal, 42, 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
[20]
Barnhisel, R. and Bertsch, P.M. (1982) Aluminum. Methods of Soil Analysis: Part 2. In: Mille, R.H. and Keeney, D.B., Eds., Chemical and Microbiological Properties, ASA, Madison, 275-300. https://doi.org/10.2134/agronmonogr9.2.2ed.c16
[21]
Van Der Zee, S.E.A.T.M., Fokkink, L.G.J. and Van Riemsdijk, W.H. (1987) A New Technique for Assessment of Reversibly Adsorbed Phosphate. Soil Science Society of America Journal, 51, 599-604. https://doi.org/10.2136/sssaj1987.03615995005100030009x
[22]
Breeuwsma, A. and Reijerink, G.A. (1993) Phosphate Satured Soils: A New Environmental Issue. Chemical Time Bombs. Proceedings of the European State-of-the-Art Conference on Delayed Effects of Chemicals in Soils and Sediments, Veldhoven, 2-5 September 1992, 79-85.
[23]
Zhao, J., Dong, Y., Xie, X., Li, X., Zhang, X., et al. (2011) Effect of Annual Variation in Soil Ph on Available Soil Nutrients in Pear Orchards. Acta Ecologica Sinica, 31, 212-216. https://doi.org/10.1016/j.chnaes.2011.04.001
[24]
Koné, B., Sylvester, O., Diatta, S., Somado, E., Kotchi, V. and Sahrawat, K.L. (2011a) Response of Interspecific and Sativa Upland Rices to Mali Phosphate Rock and Soluble Phosphate Fertilizer. Archives of Agronomy and Soil Science, 57, 421-434. https://doi.org/10.1080/03650340903563382
[25]
Koné, B., Amadji, G.L., Aliou, S., Diatta, S. And Akakpo, C. (2011) Nutrient Constraint and Yield Potential of Rice on Upland Soil in The South of Dahomey Gap of West Africa. Archives of Agronomy and Soil Science, 57, 763-774. https://doi.org/10.1080/03650340.2010.489554
[26]
Galantini, J. and Rosell, R. (2006) Long-Term Fertilization Effects on Soil Organic Matter Quality and Dynamics Under Different Production Systems in Semiarid Pampean Soils. Soil and Tillage Research, 87, 72-79. https://doi.org/10.1016/j.still.2005.02.032
[27]
Kone, B., Yao-Kouame, A., Ettien, J.B. and Camara, M. (2009) Dégradation de la fertilité chimique temporelle des Ferralsols soumis annuellement aux feux de brousses en zone de savane guinéenne de l’Afrique de l’Ouest. Sciences et Médecine. Rev. CAMES-Série A, 9, 60-66.
[28]
Dabin, B. (1970) Les Facteurs Chimiques De La Fertilité Des Sols (Bases Echangeables, Sels, Utilisation Des Echelles De Fertilité.). In: Segalen, P., Dabin B., Maignien, R., Combreau, A., Bachelier, G., Schmid, M., Bosser, J., Guinard, M. and Verdier, P., Réd., Pédologie et Développement, ORSTOM, Techniques Rurales en Afrique, No. 10, 221-237.
[29]
Jadin, P. (1972) Etude de la Fertilisation Minérale des Cacaoyers en Cote d’Ivoire à partir du Diagnostic “Sol”. Café, Cacao, Thé (Paris), 16, 204-218.
[30]
Traore, M.J. (2013) Comportement du Riz Irrigué A Différentes Doses de Calcium, Zinc et Magnésium apportées à un Sol de Bas-Fond Développé sur Granito-Gneiss en Zone de Savane Guinéenne De Cote d’Ivoire. Mémoire de DEA de l’Université Félix Houphouet Boigny.
[31]
CNRA (2012) Le CNRA en 2011. CNRA, Direction des innovations et des systèmes d’information, Abidjan.
[32]
Konan, K.F., Koné, B., Nangah, K.Y., N’gazoua, K.R., Traoré M.J., Zadi, F., Yao, G. F., Kouadio, K.H. and Yao-Kouamé, A. (2017) Yield Gap as Occurring in Lowland Rice Cropping under Guinea Savanna Ecology: Spatial and Temporal Diagnosis for Fixing Research Priority. Journal of Agriculture and Crops, 3, 51-64.
[33]
Konan, K.F., Koné, B., Koné, W.A., Traoré, M.J., N’gazoua, K.R., Akassimadou, E.F., Zadi, F., Yao, G.F., Yao-Kouamé, A. and Koné, D. (2017) Soil Organic Carbon as Observed in Lowlands of Continuous Rice Cropping in Guinea Savanna Ecology To-Wards an Improvement of Organic Matter Amendment. Journal of Research in Environmental and Earth Science, 3, 25-34.
[34]
Sahrawat, K.L. (2009) The Role of Tolerant Genotypes and Plant Nutrients in Reducing Acid-Soil Infertility in Upland Rice Ecosystem: An Appraisal. Archives of Agronomy and Soil Science, 55, 597-607. https://doi.org/10.1080/03650340902887824
[35]
Cakmak, I., Hengeler, C. and Marschner, H. (1994) Changes in Phloem of Sucrose in Leaves in Response to Phosphorus, Potassium and Magnesium Deficiency in Bean Plants. Journal of Experimental Botany, 45, 1251-1257. https://doi.org/10.1093/jxb/45.9.1251
[36]
Bennett, J.P. and Skoog, F. (1938) Preliminary Experiments on the Relation of Growth-Promoting Substances to The Rest Period in Fruit Trees. Plant Physiology, 13, 219-225. https://doi.org/10.1104/pp.13.2.219
[37]
Cakmak, I. and Yazici A.M. (2010) Magnesium: A Forgotten Element in Crop Production. Better Crops, 95, 23-25.
[38]
Koné, B., N’guessan, K.A., Touré, N., Doumbia, Y. and Sié, M. (2015) Nutrient Constraints in a Sahel Valley Land for Irrigated Rice Cultivation. Advances in Applied Agricultural Science, 3, 65-73.
[39]
Hinsinger, P. (2001) Bioavailability of Soil Inorganic P in the Rhizosphere as Affected by Root-Induced Chemical Changes: A Review. Plant and Soil, 237, 173-195. https://doi.org/10.1023/A:1013351617532
[40]
Kédi, B. (2011) Fonctionnement des Phosphatases dans les Sols Tropicaux: Influence de la Composition Organo-Minérale sur l’Expression de l’Activité Enzymatique. Thèse de Doctorat du Centre International d’Etudes Supérieures en Sciences Agronomiques (Montpellier SupAgro)/Université de Cocody.
[41]
Datnoff, L.E., Elmer, W.H. and Huber, D.M. (2007) Mineral Nutrition and Plan Disease. The American Physiological Society, St. Paul, Minnesota.
[42]
Turner, B.L. and Engelbrecht, B.M.J. (2011) Soil Organic Phosphorus in Lowland Tropical Rain Forests. Biogeochemistry, 103, 297-315. https://doi.org/10.1007/s10533-010-9466-x
[43]
Cairney, J. (2011) Ectomycorrhizal Fungi: The Symbiotic Route to the Root for Phosphorus in Forest Soils. Plant and Soil, 344, 51-71. https://doi.org/10.1007/s11104-011-0731-0
[44]
Korndorfer, G.H. and Melo, S.P. (2009) Fontes de fosforo (fluidaousolida) na produtividade agrícola e industrial da cana-deacucar. Ciencia e Agrotecnologia, 33, 92-97. https://doi.org/10.1590/S1413-70542009000100013
[45]
Koné, B., Saidou, A., Camara, M. and Diatta, S. (2010) Effet de Différentes Sources de Phosphate sur le Rendement du Riz sur Sols Acides: Optimisation du Phosphate sur un Hyperdystric Ferralsol. Agronomie Africaine, 22, 55-63. https://doi.org/10.4314/aga.v22i1.62318