全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

持续性亚实性肺结节的生长预测研究进展
Research Advances on Growth Prediction of Persistent Subsolid Nodules

DOI: 10.12677/ACM.2024.141180, PP. 1244-1251

Keywords: 亚实性结节,生长,放射组学,人工智能
Subsolid Nodules
, Growth, Radiomics, Artificial Intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着全球肺癌筛查计划的实施,亚实性肺结节的高发现率越来越受到重视。持续存在的亚实性结节很有可能是前驱腺体病变或癌性病变。目前还不清楚需通过手术切除的持续性亚实性肺结节的特征,以及稳定的亚实性肺结节的随访年限。在过去的几年里,已经发布了许多肺结节的管理指南,但这些指南仍然存在争议。另外,随着放射组学、人工智能技术飞速发展,也建立了许多结节生长的预测模型。故本文就持续性亚实性结节的生长定义、生长影响因素、预测模型和分子生物学特征作一综述,旨在优化亚实性肺结节的随访管理和临床决策。
With the implementation of the global lung cancer screening program, the high detection rate of pulmonary subsolid nodules has received more and more attention. Persistent subsolid nodules are likely to be prodromal or cancerous. The features of persistent subsolid pulmonary nodules requir-ing surgical resection and the follow-up period are unclear. Over the past few years, a number of guidelines have been issued for the management of pulmonary nodules, but these guidelines re-main controversial. In addition, with the rapid development of radiomics and artificial intelligence technology, many prediction models for nodule growth have been established. Therefore, this arti-cle reviews the growth definition, growth influencing factors, prediction models and molecular bi-ology characteristics of persistent subsolid pulmonary nodules, aiming to optimize the follow-up management and clinical decision-making of pulmonary subsolid nodules.

References

[1]  Liu, Y.-C., Liang, C.-H., Wu, Y.-J., et al. (2023) Managing Persistent Subsolid Nodules in Lung Cancer: Education, De-cision Making, and Impact of Interval Growth Patterns. Diagnostics, 13, Article No. 2674.
https://doi.org/10.3390/diagnostics13162674
[2]  Borczuk, A.C. and Cooper, W.A. (2021) WHO Classification of Tumours. Thoracic Tumours. 5th Edition, World Health Organization, Geneva, 1-565.
[3]  Lee, G.D., Park, C.H., Park, H.S., et al. (2018) Lung Adenocarcinoma Invasiveness Risk in Pure Ground-Glass Opacity Lung Nodules Smaller than 2 cm. The Thoracic and Cardiovascular Surgeon, 67, 321-328.
https://doi.org/10.1055/s-0037-1612615
[4]  Hu, F., Huang, H., Jiang, Y., et al. (2021) Discriminating Invasive Adenocarcinoma among Lung Pure Ground-Glass Nodules: A Multi-Parameter Prediction Model. Journal of Thoracic Disease, 13, 5383-5394.
https://doi.org/10.21037/jtd-21-786
[5]  Kakinuma, R., Muramatsu, Y. and Kusumoto, M. (2015) Solitary Pure Ground-Glass Nodules 5 mm or Smaller: Frequency of Growth. Radiology, 276, 873-882.
https://doi.org/10.1148/radiol.2015141071
[6]  Lee, J.H., Lim, W.H., Hong, J.H., et al. (2020) Growth and Clini-cal Impact of 6-mm or Larger Subsolid Nodules after 5 Years of Stability at Chest CT. Radiology, 295, 448-455.
https://doi.org/10.1148/radiol.2020191921
[7]  Lee, H.W., Jin, K.-N., Lee, J.-K., et al. (2019) Long-Term Fol-low-Up of Ground-Glass Nodules after 5 Years of Stability. Journal of Thoracic Oncology, 14, 1370-1377.
https://doi.org/10.1016/j.jtho.2019.05.005
[8]  Bankier, A.A., Macmahon, H., Goo, J.M., et al. (2017) Recom-mendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society. Radiology, 285, 584-600.
https://doi.org/10.1148/radiol.2017162894
[9]  Callister, M.E.J., Baldwin, D.R., Akram, A.R., et al. (2015) British Thoracic Society Guidelines for the Investigation and Management of Pulmonary Nodules: Accredited by NICE. Thorax, 70, ii1-ii54.
https://doi.org/10.1136/thoraxjnl-2015-207168
[10]  Zhao, Y., Xie, X., De Koning, H.J., et al. (2011) NELSON Lung Cancer Screening Study. Cancer Imaging, 11, S79-S84.
https://doi.org/10.1102/1470-7330.2011.9020
[11]  Kim, H., Park, C.M., Hwang, E.J., et al. (2017) Pulmonary Subsolid Nodules: Value of Semi-Automatic Measurement in Diagnostic Accuracy, Diagnostic Reproducibility and Nodule Classification Agreement. European Radiology, 28, 2124-2133.
https://doi.org/10.1007/s00330-017-5171-7
[12]  Kakinuma, R., Ashizawa, K., Kuriyama, K., et al. (2012) Meas-urement of Focal Ground-Glass Opacity Diameters on CT Images. Academic Radiology, 19, 389-394.
https://doi.org/10.1016/j.acra.2011.12.002
[13]  Tang, E.-K., Chen, C.-S., Wu, C.C., et al. (2019) Natural History of Persistent Pulmonary Subsolid Nodules: Long-Term Observation of Different Interval Growth. Heart, Lung and Circu-lation, 28, 1747-1754.
https://doi.org/10.1016/j.hlc.2018.08.015
[14]  Gao, C., Li, J., Wu, L., et al. (2020) The Natural Growth of Subsolid Nodules Predicted by Quantitative Initial CT Features: A Systematic Review. Frontiers in Oncology, 10, Article No. 318.
https://doi.org/10.3389/fonc.2020.00318
[15]  Cronin, P., Lee, J.H., Hwang, E.J., et al. (2022) Determination of the Optimum Definition of Growth Evaluation for Indeterminate Pulmonary Nodules Detected in Lung Cancer Screening. PLOS ONE, 17, e0274583.
https://doi.org/10.1371/journal.pone.0274583
[16]  He, Y., Xiong, Z., Zhang, J., et al. (2023) Growth Assessment of Pure Ground-Glass Nodules on CT: Comparison of Density and Size Measurement Methods. Journal of Cancer Re-search and Clinical Oncology, 149, 9937-9946.
https://doi.org/10.1007/s00432-023-04918-5
[17]  Guo, X., Jia, X., Zhang, D., et al. (2022) Indeterminate Pulmo-nary Subsolid Nodules in Patients with No History of Cancer: Growing Prediction, CT Pattern, and Pathological Diag-nosis. Diagnostic and Interventional Radiology, 28, 230-238.
https://doi.org/10.5152/dir.2022.211100
[18]  Sun, Y., Ma, Z., Zhao, W., et al. (2023) Computed Tomography Radiomics in Growth Prediction of Pulmonary Ground-Glass Nodules. European Journal of Radiology, 159, Article ID: 110684.
https://doi.org/10.1016/j.ejrad.2022.110684
[19]  Zhang, Z., Zhou, L., Min, X., et al. (2023) Long-Term Follow-Up of Persistent Pulmonary Subsolid Nodules: Natural Course of Pure, Heterogeneous, and Real Part-Solid Ground-Glass Nodules. Thoracic Cancer, 14, 1059-1070.
https://doi.org/10.1016/j.ejrad.2022.110684
[20]  Yoon, H.Y., Bae, J.Y., Kim, Y., et al. (2019) Risk Factors Asso-ciated with an Increase in the Size of Ground‐Glass Lung Nodules on Chest Computed Tomography. Thoracic Cancer, 10, 1544-1551.
https://doi.org/10.1111/1759-7714.13098
[21]  Liang, X., Liu, M., Li, M., et al. (2022) Clinical and CT Features of Subsolid Pulmonary Nodules with Interval Growth: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 12, Article ID: 929174.
https://doi.org/10.3389/fonc.2022.929174
[22]  Wu, L., Gao, C., Kong, N., et al. (2022) The Long-Term Course of Subsolid Nodules and Predictors of Interval Growth on Chest CT: A Systematic Review and Meta-Analysis. European Radiology, 33, 2075-2088.
https://doi.org/10.1007/s00330-022-09138-y
[23]  Shi, Z., Deng, J., She, Y., et al. (2019) Quantitative Features Can Predict Further Growth of Persistent Pure Ground-Glass Nodule. Quantitative Imaging in Medicine and Surgery, 9, 283-291.
https://doi.org/10.21037/qims.2019.01.04
[24]  Cho, J., Kim, E.S., Kim, S.J., et al. (2016) Long-Term Follow-Up of Small Pulmonary Ground-Plass Nodules Stable for 3 Years: Implications of the Proper Follow-Up Period and Risk Factors for Subsequent Growth. Journal of Thoracic Oncology, 11, 1453-1459.
https://doi.org/10.1016/j.jtho.2016.05.026
[25]  Barletta, J.A., Yeap, B.Y. and Chirieac, L.R. (2009) Prognostic Significance of Grading in Lung Adenocarcinoma. Cancer, 116, 659-669.
https://doi.org/10.1002/cncr.24831
[26]  Kato, T., Iwano, S., Hanamatsu, Y., et al. (2023) Prognostic Impact of Highly Solid Component in Early-Stage Solid Lung Adenocarcinoma. Quantitative Imaging in Medicine and Surgery, 13, 5641-5652.
https://doi.org/10.21037/qims-23-36
[27]  Xi, J., Yin, J., Liang, J., et al. (2021) Prognostic Impact of Radiological Consolidation Tumor Ratio in Clinical Stage IA Pulmonary Ground Glass Opacities. Frontiers in Oncology, 11, Article ID: 616149.
https://doi.org/10.3389/fonc.2021.616149
[28]  Lee, J.H., Park, C.M., Lee, S.M., et al. (2015) Persistent Pulmonary Subsolid Nodules with Solid Portions of 5 mm or Smaller: Their Natural Course and Predictors of Interval Growth. Eu-ropean Radiology, 26, 1529-1537.
https://doi.org/10.1007/s00330-015-4017-4
[29]  Song, Y.S., Park, C.M., Park, S.J., et al. (2014) Volume and Mass Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in Patients without Known Malignancy. Ra-diology, 273, 276-284.
https://doi.org/10.1148/radiol.14132324
[30]  Xia, T., Cai, M., Zhuang, Y., et al. (2020) Risk Factors for the Growth of Residual Nodule in Surgical Patients with Adenocarcinoma Presenting as Multifocal Ground-Glass Godules. European Journal of Radiology, 133, Article ID: 109332.
https://doi.org/10.1016/j.ejrad.2020.109332
[31]  Silva, M., Prokop, M., Jacobs, C., et al. (2018) Long-Term Active Surveillance of Screening Detected Subsolid Nodules Is a Safe Strategy to Reduce Overtreatment. Journal of Thoracic Oncology, 13, 1454-1463.
https://doi.org/10.1016/j.jtho.2018.06.013
[32]  Lin, C.-Y., Guo, S.-M., Lien, J.-J.J., et al. (2023) Combined Model Integrating Deep Learning, Radiomics, and Clinical Data to Classify Lung Nodules at Chest CT. La Radiologia Medica.
https://doi.org/10.1007/s11547-023-01730-6
[33]  Huang, W., Deng, H., Li, Z., et al. (2023) Baseline Whole-Lung CT Features Deriving from Deep Learning and Radiomics: Prediction of Benign and Malignant Pulmonary Ground-Glass Nodules. Frontiers in Oncology, 13, Article ID: 1255007.
https://doi.org/10.3389/fonc.2023.1255007
[34]  Kao, T.-N., Hsieh, M.-S., Chen, L.-W., et al. (2022) CT-Based Radiomic Analysis for Preoperative Prediction of Tumor Invasiveness in Lung Adenocarcinoma Presenting as Pure Ground-Glass Nodule. Cancers, 14, Article No. 5888.
https://doi.org/10.3390/cancers14235888
[35]  Ather, S., Kadir, T. and Gleeson, F. (2020) Artificial Intelligence and Radiomics in Pulmonary Nodule Management: Current Status and Future Applications. Clinical Radiology, 75, 13-19.
https://doi.org/10.1016/j.crad.2019.04.017
[36]  Gao, C., Yan, J., Luo, Y., et al. (2020) The Growth Trend Predic-tions in Pulmonary Ground Glass Nodules Based on Radiomic CT Features. Frontiers in Oncology, 10, Article ID: 580509.
https://doi.org/10.1016/j.crad.2019.04.017
[37]  Ma, Z.J., Ma, Z.X., Sun, Y.L., et al. (2023) Prediction of Subsolid Pulmonary Nodule Growth Rate Using Radiomics. BMC Medical Imaging, 23, Article No. 177.
https://doi.org/10.1186/s12880-023-01143-x
[38]  Wu, Y.-J., Wu, F.-Z., Yang, S.-C., et al. (2022) Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics, 12, Article No. 1064.
https://doi.org/10.3390/diagnostics12051064
[39]  Kim, R.Y., Oke, J.L., Dotson, T.L., et al. (2023) Effect of an Artificial Intelligence Tool on Management Decisions for Indeterminate Pulmonary Nodules. Respirology, 28, 582-584.
https://doi.org/10.1111/resp.14502
[40]  Balagurunathan, Y., Beers, A., Mcnitt-Gray, M., et al. (2021) Lung Nodule Malignancy Prediction in Sequential CT Scans: Summary of ISBI 2018 Challenge. IEEE Transactions on Medical Imaging, 40, 3748-3761.
https://doi.org/10.1109/TMI.2021.3097665
[41]  Borghesi, A., Coviello, F.L., Scrimieri, A., et al. (2023) Soft-ware-Based Quantitative CT Analysis to Predict the Growth Trend of Persistent Nonsolid Pulmonary Nodules: A Retro-spective Study. La Radiologia Medica, 128, 734-743.
https://doi.org/10.1007/s11547-023-01648-z
[42]  Qi, L.-L., Wang, J.-W., Yang, L., et al. (2020) Natural History of Pathologically Confirmed Pulmonary Subsolid Nodules with Deep Learning-Assisted Nodule Segmentation. European Radiology, 31, 3884-3897.
https://doi.org/10.1007/s00330-020-07450-z
[43]  Tao, G., Zhu, L., Chen, Q., et al. (2022) Prediction of Future Imagery of Lung Nodule as Growth Modeling with Follow-Up Computed Tomography Scans Using Deep Learning: A Retrospective Cohort Study. Translational Lung Cancer Research, 11, 250-262.
https://doi.org/10.21037/tlcr-22-59
[44]  Cai, Y., Chen, T., Zhang, S., et al. (2023) Correlation Exploration among CT Imaging, Pathology and Genotype of Pulmonary Ground-Glass Opacity. Journal of Cellular and Molecular Medicine, 27, 2021-2031.
https://doi.org/10.1111/jcmm.17797
[45]  Xu, X., Li, N., Zhao, R., et al. (2017) Targeted Next-Generation Se-quencing for Analyzing the Genetic Alterations in Atypical Adenomatous Hyperplasia and Adenocarcinoma in Situ. Journal of Cancer Research and Clinical Oncology, 143, 2447-2453.
https://doi.org/10.1007/s00432-017-2500-9
[46]  Lu, Q., Ma, Y., An, Z., et al. (2018) Epidermal Growth Factor Receptor Mutation Accelerates Radiographic Progression in Lung Adenocarcinoma Presented as a Solitary Ground-Glass Opacity. Journal of Thoracic Disease, 10, 6030-6039.
https://doi.org/10.21037/jtd.2018.10.19
[47]  Ren, J., Wang, Y., Liu, C., et al. (2023) Correlation Analysis of Clinical, Pathological, Imaging and Genetic Features of Ground-Glass Nodule Featured Lung Adenocarcinomas between High-Risk and Non-High-Risk Individuals. European Journal of Medical Research, 28, 1-14.
https://doi.org/10.1186/s40001-023-01462-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133