全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Venopulmonary ECMO Improved Hypoxemia and Supported the Right Ventricle in a Patient with Decompensated Eisenmenger Syndrome

DOI: 10.4236/wjcs.2024.141002, PP. 7-19

Keywords: Eisenmenger Syndrome, Venopulmonary Artery ECMO, Refractory Hypoxemia, Right Ventricular Dysfunction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechanical circulatory and/or respiratory assistance with extracorporeal membrane oxygenation (ECMO) has become a standard of care for patients with circulatory (venoarterial) and/or respiratory (venovenous) failure refractory to standard therapies. Adult patients with congenital heart disease are an increasingly recognized and growing population and include various groups, such as undiagnosed cases in childhood and palliated and/or corrected cases, which require subsequent care because of residual lesions, cardiac arrest/insufficiency, and arrhythmias, among other conditions. In addition, these patients are prone to developing pathologies that are typical of adulthood with a generally increased risk of morbidity and mortality because of their low reserves and organic damage associated with the underlying heart disease, which makes them candidates for ECMO. These patients represent an additional challenge in this therapy because malformations and the presence of a shunt can generally affect the usual cannulation methods and hemodynamic and oximetry monitoring. Thus, the configuration decision must be made on a case-by-case basis. Here, we present a cannulation method, venopulmonary artery ECMO, which provides hemodynamic and respiratory support, and may be ideal for patients with shunts and/or right ventricular dysfunction. To our knowledge, this is the first report of this configuration in patients with congenital heart diseases.

References

[1]  Briston, D.A., Bradley, E.A., Sabanayagam, A. and Zaidi, A.N. (2016) Health Care Costs for Adults with Congenital Heart Disease in the United States 2002 to 2012. The American Journal of Cardiology, 118, 590-596.
https://doi.org/10.1016/j.amjcard.2016.05.056
[2]  Serfas, J.D., Patel, P.A. and Krasuski, R.A. (2018) Heart Transplantation and Mechanical Circulatory Support in Adults with Congenital Heart Disease. Current Cardiology Reports, 20, Article No. 81.
https://doi.org/10.1007/s11886-018-1028-1
[3]  Dolgner, S.J., Krieger, E.V., Wilkes, J., Bratton, S.L., Thiagarajan, R.R., Barrett, C.S. and Chan, T. (2019) Predictors of Extracorporeal Membrane Oxygenation Support after Surgery for Adult Congenital Heart Disease in Children’s Hospitals. Congenital Heart Disease, 14, 559-570.
https://doi.org/10.1111/chd.12758
[4]  Rojas-Velasco, G., Carmona-Levario, P., Manzur-Sandoval, D., Lazcano-Díaz, E. and Damas-de Los Santos, F. (2022) Pulmonary Artery Cannulation during Venovenous Extracorporeal Membrane Oxygenation: An Alternative to Manage Refractory Hypoxemia and Right Ventricular Dysfunction. Respiratory Medicine Case Reports, 38, Article ID: 101704.
https://doi.org/10.1016/j.rmcr.2022.101704
[5]  Belohlavek, J., Rohn, V., Jansa, P., Tosovsky, J., Kunstyr, J., Semrad, M., Horak, J., Lips, M., Mlejnsky, F., Balik, M., Klein, A., Linhart, A. and Lindner, J. (2010) Veno-Arterial ECMO in Severe Acute Right Ventricular Failure with Pulmonary Obstructive Hemodynamic Pattern. Journal of Invasive Cardiology, 22, 365-369.
[6]  Turbendian, H.K., Gebhardt, J., Scherkenbach, P., Zawadzki, M.J. and Shillingford, M. (2021) A Novel Approach to Delivery of Extracorporeal Support Using a Modified Continuous Flow Ventricular Assist Device in a Mid-Volume Congenital Heart Program. Artificial Organs, 45, 55-62.
https://doi.org/10.1111/aor.13840
[7]  Unger, E.D., Sweis, R.N. and Bharat, A. (2021) Unusual Complication of a Right Ventricular Support-Extracorporeal Membrane Oxygenation Cannula. JAMA Cardiology, 6, 723-724.
https://doi.org/10.1001/jamacardio.2021.0284
[8]  Goldstein, S.A. and Krasuski, R.A. (2022) Pulmonary Hypertension in Adults with Congenital Heart Disease. Cardiology Clinics, 40, 55-67.
https://doi.org/10.1016/j.ccl.2021.08.006
[9]  Calderón-Colmenero, J., Sandoval Zárate, J. and Beltrán Gámez, M. (2015) Hipertensión pulmonar asociada a cardiopatías congénitas y síndrome de Eisenmenger. Archivos de Cardiología de México, 85, 32-49.
https://doi.org/10.1016/j.acmx.2014.11.008
[10]  Beghetti, M. and Galiè, N. (2009) Eisenmenger Syndrome a Clinical Perspective in a New Therapeutic Era of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 53, 733-740.
https://doi.org/10.1016/j.jacc.2008.11.025
[11]  Dimopoulos, K., Okonko, D.O., Diller, G.P., Broberg, C.S., Salukhe, T.V., Babu-Narayan, S.V., Li, W., Uebing, A., Bayne, S., Wensel, R., Piepoli, M.F., Poole-Wilson, P.A., Francis, D.P. and Gatzoulis, M.A. (2006) Abnormal Ventilatory Response to Exercise in Adults with Congenital Heart Disease Relates to Cyanosis and Predicts Survival. Circulation, 113, 2796-2802.
https://doi.org/10.1161/CIRCULATIONAHA.105.594218
[12]  Dimopoulos, K., Wort, S.J. and Gatzoulis, M.A. (2014) Pulmonary Hypertension Related to Congenital Heart Disease: A Call for Action. European Heart Journal, 35, 691-700.
https://doi.org/10.1093/eurheartj/eht437
[13]  Lim, M.X., Ismail, A.J. and Yeap, T.B. (2022) Challenges in Managing a Critically Ill Patient with Decompensated Eisenmenger Syndrome. BMJ Case Reports, 15, e245549.
https://doi.org/10.1136/bcr-2021-245549
[14]  Perry, T., Brown, T., Misfeldt, A., Lehenbauer, D. and Cooper, D.S. (2022) Extracorporeal Membrane Oxygenation in Congenital Heart Disease. Children, 9, Article 380.
https://doi.org/10.3390/children9030380
[15]  Rosenzweig, E.B., Brodie, D., Abrams, D.C., Agerstrand, C.L. and Bacchetta, M. (2014) Extracorporeal Membrane Oxygenation as a Novel Bridging Strategy for Acute Right Heart Failure in Group 1 Pulmonary Arterial Hypertension. ASAIO Journal, 60, 129-133.
https://doi.org/10.1097/MAT.0000000000000021
[16]  Zochios, V., Yusuff, H., Conway, H., Lau, G. and Schmidt, M. (2022) The Right Ventricle during Veno-Venous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome: Can We Protect the Injured Ventricle? ASAIO Journal, 68, 456-460.
https://doi.org/10.1097/MAT.0000000000001655
[17]  Shaefi, S., Brenner, S.K., Gupta, S., O’Gara, B.P., Krajewski, M.L., Charytan, D.M., Chaudhry, S., Mirza, S.H., Peev, V., Anderson, M., Bansal, A., Hayek, S.S., Srivastava, A., Mathews, K.S., Johns, T.S., Leonberg-Yoo, A., Green, A., Arunthamakun, J., Wille, K.M., Shaukat, T., Singh, H., Admon, A.J., Semler, M.W., Hernán, M.A., Mueller, A.L., Wang, W., Leaf, D.E. and STOP-COVID Investigators (2021) Extracorporeal Membrane Oxygenation in Patients with Severe Respiratory Failure from COVID-19. Intensive Care Medicine, 47, 208-221.
https://doi.org/10.1007/s00134-020-06331-9
[18]  Cain, M.T., Smith, N.J., Barash, M., Simpson, P., Durham III, L.A., Makker, H., Roberts, C., Falcucci, O., Wang, D., Walker, R., Ahmed, G., Brown, S.A., Nanchal, R.S. and Joyce, D.L. (2021) Extracorporeal Membrane Oxygenation with Right Ventricular Assist Device for COVID-19 ARDS. Journal of Surgical Research, 264, 81-89.
https://doi.org/10.1016/j.jss.2021.03.017
[19]  Zochios, V., Yusuff, H., Antonini, M.V., Schmidt, M., Shekar, K. and for Protecting the Right Ventricle Network (PRORVnet) (2023) Veno-Pulmonary Arterial Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Distress Syndrome: Should We Consider Mechanical Support of the Pulmonary Circulation from the Outset? ASAIO Journal, 69, 511-518.
https://doi.org/10.1097/MAT.0000000000001930
[20]  Liboiron, M., Malone, M.P., Brown, C.C. and Prodhan, P. (2023) Extracorporeal Membrane Oxygenation and Hemolytic Uremic Syndrome in Children: Outcome Review of a Multicenter National Database. Journal of Pediatric Intensive Care.
https://doi.org/10.1055/s-0042-1758478
[21]  Dimopoulos, K., Diller, G.P., Koltsida, E., Pijuan-Domenech, A., Papadopoulou, S.A., Babu-Narayan, S.V., Salukhe, T.V., Piepoli, M.F., Poole-Wilson, P.A., Best, N., Francis, D.P. and Gatzoulis, M.A. (2008) Prevalence, Predictors, and Prognostic Value of Renal Dysfunction in Adults with Congenital Heart Disease. Circulation, 117, 2320-2328.
https://doi.org/10.1161/CIRCULATIONAHA.107.734921
[22]  Goldstein, S.A. and Goldstein, L.B. (2021) Neurologic Complications of Congenital Heart Disease in Adults. Handbook of Clinical Neurology, 177, 15-22.
https://doi.org/10.1016/B978-0-12-819814-8.00011-1
[23]  Konno, R., Tatebe, S., Sugimura, K., Satoh, K., Aoki, T., Miura, M., Suzuki, H., Yamamoto, S., Sato, H., Terui, Y., Miyata, S., Adachi, O., Kimura, M., Saiki, Y. and Shimokawa, H. (2019) Prognostic Value of the Model for End-Stage Liver Disease Excluding INR Score (MELD-XI) in Patients with Adult Congenital Heart Disease. PLOS ONE, 14, e0225403.
https://doi.org/10.1371/journal.pone.0225403
[24]  Dolgner, S.J., Nguyen, V.P., Krieger, E.V., Stempien-Otero, A. and Dardas, T.F. (2021) Long-Term Adult Congenital Heart Disease Survival after Heart Transplantation: A Restricted Mean Survival Time Analysis. The Journal of Heart and Lung Transplantation, 40, 698-706.
https://doi.org/10.1016/j.healun.2021.02.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133