全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HXD3型机车车轮磨耗数据建模与镟修策略优化
Modeling of Wheel Wear Data and Optimization of Re-Profiling Strategy for HXD3 Locomotives

DOI: 10.12677/OJTT.2024.131005, PP. 43-51

Keywords: 机车车辆,车轮磨耗,镟修策略,蒙特卡洛仿真
Locomotive Vehicle
, Wheel Wear, Turning Strategy, Monte Carlo Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

机车车轮的磨耗难以避免,研究车轮磨耗规律,优化镟修策略具有重要意义。本文首先介绍了车轮常见的损伤种类和镟修机理,后建立了轮缘厚度磨耗模型、轮径磨耗模型和基于上述模型利用蒙特卡洛方法提出的一种车轮镟修策略优化方案,以降低车轮全寿命周期的使用成本。在建立磨耗模型过程中,分别采用二次曲线拟合轮缘厚度磨耗速率模型和高斯分布拟合轮径磨耗模型;对136组镟修策略的仿真结果表明,车轮轮缘厚度在28~32.5 mm时车轮的生命周期较长,其中镟修前后轮缘厚度为28.5 mm,31.5 mm时为最优镟修策略,此时车轮仿真预期使用寿命最长、车轮平均使用成本最低。
Wear of locomotive wheels is unavoidable, and it is of great significance to study the wheel wear pattern and optimize the re-profiling strategy. This paper firstly introduces the common types of wheel damage and re-profiling mechanism, and then establishes a wheel flange thickness wear model, a wheel diameter wear model and a wheel re-profiling strategy optimization scheme based on the above models using the Monte Carlo method, so as to reduce the cost of wheel life cycle. In the process of establishing the abrasion model, the quadratic curve is used to fit the flange thickness wear rate model and the Gaussian distribution is used to fit the wheel diameter abrasion model, respectively; the simulation results of 136 groups of re-profiling strategies show that, when the thickness of wheel flange before and after re-profiling is 28.5 mm and 31.5 mm, the wheel life cycle is the longest of 75 months, which corresponds to the lowest average cost of 880 yuan/month.

References

[1]  Shebani, A. and Iwnicki, S. (2018). Prediction of Wheel and Rail Wear under Different Contact Conditions Using Artificial Neural Networks. Wear, 406-407, 173-184.
https://doi.org/10.1016/j.wear.2018.01.007
[2]  Tao, G., Wen, Z., Zhao, X. and Jin, X. (2016) Effects of Wheel-Rail Contact Modelling on Wheel Wear Simulation’. Wear, 366-367, 146-156.
https://doi.org/10.1016/j.wear.2016.05.010
[3]  De Paula Pacheco, P.A., Endlich, C.S., Vieira, K.L.S., Reis, T., Dos Santos, G.F.M. and Dos Santos Júnior, A.A. (2023) Optimization of Heavy Haul Railway Wheel Profile Based on Rolling Contact Fatigue and Wear Performance. Wear, 522, Article 204704.
https://doi.org/10.1016/j.wear.2023.204704
[4]  Pradhan, S., Samantaray, A.K. and Bhattacharyya, R. (2018) Prediction of Railway Wheel Wear and Its Influence on The Vehicle Dynamics in a Specific Operating Sector of Indian Railways Network. Wear, 406-407, 92-104.
https://doi.org/10.1016/j.wear.2018.03.020
[5]  Ignesti, M., Marini, L., Meli, E., et al. (2014) Development of a Model for the Simultaneous Analysis of Wheel and Rail Wear in Railway Systems. Multibody System Dynamics, 31, 191-240.
https://doi.org/10.1007/s11044-013-9360-0
[6]  Tao, G., Wang, S., Ren, D., Li, J. and Wen, Z. (2022) Understanding and Treatment of Severe Flange Wear of Metro Train Wheels. Vehicle System Dynamics, 61, 1-17.
https://doi.org/10.1080/00423114.2022.2117057
[7]  Han, P. and Zhang, W.H. (2015) A New Binary Wheel Wear Prediction Model Based on Statistical Method and the Demonstration. Wear, 324, 90-99.
https://doi.org/10.1016/j.wear.2014.11.022
[8]  王凌, 员华, 那文波, 陈锡爱, 李运堂. 基于磨耗数据驱动模型的轮对镟修策略优化和剩余寿命预报[J]. 系统工程理论与实践, 2011, 31(6): 1143-1152.
[9]  TAOVANCHIEN, 李芾, 戚壮, 丁军君. 机车车轮磨耗统计数据处理方法与镟修周期预测模型[J]. 铁道学报, 2015, 37(12): 14-19.
[10]  许宏, 员华, 王凌, 那文波, 徐文彬, 李运堂. 基于高斯过程的地铁车辆轮对磨耗建模及其镟修策略优化[J]. 机械工程学报, 2010, 46(24): 88-95.
[11]  张渝, 王松, 邱春蓉. 基于轮对磨耗数据的CRH2A型动车经济镟修策略研究[J]. 铁路计算机应用, 2021, 30(4): 6-10.
[12]  金学松, 吴越, 梁树林, 温泽峰. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14.
[13]  王伯铭. 高速动车组总体及转向架[M]. 成都: 西南交通大学出版社, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133