全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的影像组学在预测结直肠癌基因状态中的应用进展
Application Advances in Deep Learning-Based Imaging Radiomics for Predicting Colorectal Cancer Gene Status

DOI: 10.12677/WJCR.2024.141005, PP. 27-34

Keywords: 结直肠癌,影像组学,深度学习,基因状态,微卫星不稳定性
Colorectal Cancer
, Imaging Radiomics, Deep Learning, Gene Status, Microsatellite Instability

Full-Text   Cite this paper   Add to My Lib

Abstract:

结直肠癌(CRC)在中国的发病率和死亡率持续上升,多数病人在确诊时已属于中晚期。个性化的治疗策略和预后分析在很大程度上依赖于对CRC患者遗传特征的了解。近年来,影像组学已经成为一种有价值的工具,它通过图形分析和特征提取在肿瘤基因表达和影像表型之间建立了联系。随着机器深度学习的介入,这种非侵入性的技术可在术前预测肿瘤相关的基因型。目前,越来越多的研究致力于研究图像特征和CRC基因型之间的关系,从而为CRC基因型的诊断和预测提供更高的准确性。本综述旨在总结基于CRC的影像技术在预测结直肠癌遗传状态方面的临床应用、进展和目前的局限性。最终目的是加强临床医师对CRC成像技术的理解,提高CRC的诊断、预后和治疗方面的潜力。
The incidence and mortality of colorectal cancer (CRC) continue to rise in China, and most patients are in the middle to advanced stages at the time of diagnosis. Personalized treatment strategies and prognostic analyses rely heavily on the knowledge of genetic characteristics of CRC patients. In re-cent years, imaging genomics has emerged as a valuable tool that establishes a link between tumor gene expression and imaging phenotype through graphical analysis and feature extraction. With the intervention of deep machine learning, this non-invasive technique can predict tumor-associated genotypes preoperatively. Currently, more and more studies are devoted to investigating the relationship between image features and CRC genotypes, thus providing higher accuracy in diagnosis and prediction of CRC genotypes. The aim of this review is to summarize the clinical applications, advances, and current limitations of CRC-based imaging techniques in predicting the genetic status of colorectal cancer. The ultimate goal is to enhance clinicians’ understanding of CRC imaging techniques and to improve the potential of CRC in terms of diagnosis, prognosis, and treatment.

References

[1]  Cao, W., Chen, H.D., Yu, Y.W., et al. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Second-ary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal (England), 134, 783-791.
https://doi.org/10.1097/CM9.0000000000001474
[2]  Valentini, V., Glimelius, B., Haustermans, K., et al. (2014) EURECCA Consensus Conference Highlights about Rectal Cancer Clinical Management: The Radiation Oncologist’s Expert Review. Radiotherapy and Oncology, 110, 195-198.
https://doi.org/10.1016/j.radonc.2013.10.024
[3]  Fujita, S., Mizusawa, J., Kanemitsu, Y., et al. (2017) Mesorectal Excision with or without Lateral Lymph Node Dissection for Clinical Stage II/III Lower Rectal Cancer (JCOG0212): A Multicenter, Randomized Controlled, Noninferiority Trial. Annals of Surgery, 266, 201-207.
https://doi.org/10.1097/SLA.0000000000002212
[4]  Biller, L.H. and Schrag, D. (2021) Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA, 325, 669-685.
https://doi.org/10.1001/jama.2021.0106
[5]  Zhou, J., Ji, Q. and Li, Q. (2021) Resistance to Anti-EGFR Therapies in Metastatic Colorectal Cancer: Underlying Mechanisms and Reversal Strategies. Journal of Experimental & Clinical Cancer Research, 40, Article No. 328.
https://doi.org/10.1186/s13046-021-02130-2
[6]  Herreros-Villanueva, M., Chen, C.C., Yuan, S.S., et al. (2014) KRAS Mutations: Analytical Considerations. Clinica Chimica Acta, 431, 211-220.
https://doi.org/10.1016/j.cca.2014.01.049
[7]  Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radi-omics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446.
https://doi.org/10.1016/j.ejca.2011.11.036
[8]  Engin, G., Sharifov, R., Gural, Z., et al. (2012) Can Diffu-sion-Weighted MRI Determine Complete Responders after Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer? Diagnostic and Interventional Radiology, 18, 574-581.
https://doi.org/10.4261/1305-3825.DIR.5755-12.1
[9]  Aerts, H.J., Grossmann, P., Tan, Y., et al. (2016) Defining a Radiomic Response Phenotype: A Pilot Study Using Targeted Therapy in NSCLC. Scientific Reports, 6, Article No. 33860.
https://doi.org/10.1038/srep33860
[10]  Litjens, G., Kooi, T., Bejnordi, B.E., et al. (2017) A Survey on Deep Learning in Medical Image Analysis. Medical Image Analysis, 42, 60-88.
https://doi.org/10.1016/j.media.2017.07.005
[11]  Zhang, Q., Yang, L.T., Chen, Z., et al. (2018) A Survey on Deep Learning for Big Data. Information Fusion, 42, 146-157.
https://doi.org/10.1016/j.inffus.2017.10.006
[12]  Roth, A.D., Tejpar, S., Delorenzi, M., et al. (2010) Prognostic Role of KRAS and BRAF in Stage II and III Resected Colon Cancer: Results of the Translational Study on the PETACC-3, EORTC 40993, SAKK 60-00 Trial. Journal of Clinical Oncology, 28, 466-474.
https://doi.org/10.1200/JCO.2009.23.3452
[13]  Dienstmann, R., Connor, K., Byrne, A.T., et al. (2020) Precision Therapy in RAS Mutant Colorectal Cancer. Gastroenterology, 158, 806-811.
https://doi.org/10.1053/j.gastro.2019.12.051
[14]  Imamura, Y., Morikawa, T., Liao, X., et al. (2012) Specific Mu-tations in KRAS Codons 12 and 13, and Patient Prognosis in 1075 BRAF Wild-Type Colorectal Cancers. Clinical Can-cer Research, 18, 4753-4763.
https://doi.org/10.1158/1078-0432.CCR-11-3210
[15]  Jones, R.P., Sutton, P.A., Evans, J.P., et al. (2017) Specific Mutations in KRAS Codon 12 Are Associated with Worse Overall Survival in Patients with Advanced and Recurrent Colorectal Cancer. British Journal of Cancer, 116, 923-929.
https://doi.org/10.1038/bjc.2017.37
[16]  Di Fiore, F., Charbonnier, F., Lefebure, B., et al. (2008) Clinical Interest of KRAS Mutation Detection in Blood for Anti-EGFR Therapies in Metastatic Colorectal Cancer. British Journal of Cancer, 99, 551-552.
https://doi.org/10.1038/sj.bjc.6604451
[17]  Marisa, L., De Reynies, A., Duval, A., et al. (2013) Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLOS Med-icine, 10, e1001453.
https://doi.org/10.1371/journal.pmed.1001453
[18]  Pershad, Y., Govindan, S., Hara, A.K., et al. (2017) Using Naive Bayesian Analysis to Determine Imaging Characteristics of KRAS Mutations in Metastatic Colon Cancer. Diag-nostics (Basel), 7, Article No. 50.
https://doi.org/10.3390/diagnostics7030050
[19]  Xu, Y., Xu, Q., Sun, H., et al. (2018) Could IVIM and ADC Help in Predicting the KRAS Status in Patients with Rectal Cancer? European Radiology, 28, 3059-3065.
https://doi.org/10.1007/s00330-018-5329-y
[20]  Jo, S.J. and Kim, S.H. (2019) Association between Oncogenic RAS Mutation and Radiologic-Pathologic Findings in Patients with Primary Rectal Cancer. Quantitative Imaging in Medicine and Surgery, 9, 238-246.
https://doi.org/10.21037/qims.2018.12.10
[21]  Gultekin, M.A., Turk, H.M., Besiroglu, M., et al. (2020) Relation-ship between KRAS Mutation and Diffusion Weighted Imaging in Colorectal Liver Metastases; Preliminary Study. Eu-ropean Journal of Radiology, 125, Article No. 108895.
https://doi.org/10.1016/j.ejrad.2020.108895
[22]  Song, C., Shen, B., Dong, Z., et al. (2020) Diameter of Superior Rectal Vein-CT Predictor of KRAS Mutation in Rectal Carcinoma. Cancer Management and Research, 12, 10919-10928.
https://doi.org/10.2147/CMAR.S270727
[23]  Promsorn, J., Chadbunchachai, P., Somsap, K., et al. (2021) Imaging Features Associated with Survival Outcomes among Colorectal Cancer Patients with and without KRAS Mutation. Egyptian Journal of Radiology and Nuclear Medicine, 52, Article No. 15.
https://doi.org/10.1186/s43055-020-00393-x
[24]  Lv, Y., Wang, X., Liang, L., et al. (2019) SUVmax and Metabolic Tumor Volume: Surrogate Image Biomarkers of KRAS Mutation Status in Colorectal Cancer. OncoTargets and Therapy, 12, 2115-2121.
https://doi.org/10.2147/OTT.S196725
[25]  Arslan, E., Aksoy, T., Gursu, R.U., et al. (2020) The Prognostic Value of (18)F-FDG PET/CT and KRAS Mutation in Colorectal Cancers. Molecular Imaging and Radionuclide Therapy, 29, 17-24.
https://doi.org/10.4274/mirt.galenos.2019.33866
[26]  He, P., Zou, Y., Qiu, J., et al. (2021) Pretreatment (18)F-FDG PET/CT Imaging Predicts the KRAS/NRAS/BRAF Gene Mutational Status in Colorectal Cancer. Journal of Oncology, 2021, Article ID: 6687291.
https://doi.org/10.1155/2021/6687291
[27]  Liu, X., Wang, S.C., Ni, M., et al. (2022) Correlation between (18)F-FDG PET/CT Intra-Tumor Metabolic Heterogeneity Parameters and KRAS Mutation in Colorectal Cancer. Ab-dominal Radiology (NY), 47, 1255-1264.
https://doi.org/10.1007/s00261-022-03432-5
[28]  Song, K., Zhao, Z., Ma, Y., et al. (2022) A Multitask Du-al-Stream Attention Network for the Identification of KRAS Mutation in Colorectal Cancer. Medical Physics, 49, 254-270.
https://doi.org/10.1002/mp.15361
[29]  Taguchi, N., Oda, S., Yokota, Y., et al. (2019) CT Texture Analy-sis for the Prediction of KRAS Mutation Status in Colorectal Cancer via a Machine Learning Approach. European Jour-nal of Radiology, 118, 38-43.
https://doi.org/10.1016/j.ejrad.2019.06.028
[30]  Wu, X., Li, Y., Chen, X., et al. (2020) Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Aca-demic Radiology, 27, e254-e262.
https://doi.org/10.1016/j.acra.2019.12.007
[31]  Jiricny, J. (2006) The Multifaceted Mismatch-Repair System. Na-ture Reviews Molecular Cell Biology, 7, 335-346.
https://doi.org/10.1038/nrm1907
[32]  Bao, X., Zhang, H., Wu, W., et al. (2020) Analysis of the Molecular Nature Associated with Microsatellite Status in Colon Cancer Identifies Clinical Implications for Immunotherapy. The Journal for ImmunoTherapy of Cancer, 8, e001437.
https://doi.org/10.1136/jitc-2020-001437
[33]  De’Angelis, G.L., Bottarelli, L., Azzoni, C., et al. (2018) Microsatel-lite Instability in Colorectal Cancer. Acta Biomedica, 89, 97-101.
[34]  Mei, W.J., Mi, M., Qian, J., et al. (2022) Clinico-pathological Characteristics of High Microsatellite Instability/Mismatch Repair-Deficient Colorectal Cancer: A Narrative Review. Frontiers in Immunology, 13, Article ID: 1019582.
https://doi.org/10.3389/fimmu.2022.1019582
[35]  Cohen, R., Buhard, O., Cervera, P., et al. (2017) Clinical and Molecular Characterisation of Hereditary and Sporadic Metastatic Colorectal Cancers Harbouring Microsatellite Instabil-ity/DNA Mismatch Repair Deficiency. European Journal of Cancer, 86, 266-274.
https://doi.org/10.1016/j.ejca.2017.09.022
[36]  Luchini, C., Bibeau, F., Ligtenberg, M.J.L., et al. (2019) ESMO Recommendations on Microsatellite Instability Testing for Immunotherapy in Cancer, and Its Relationship with PD-1/PD-L1 Expression and Tumour Mutational Burden: A Systematic Review-Based Approach. Annals of Oncology, 30, 1232-1243.
https://doi.org/10.1093/annonc/mdz116
[37]  Bhargava, R. and Madabhushi, A. (2016) Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology. Annual Review of Biomedical Engineering, 18, 387-412.
https://doi.org/10.1146/annurev-bioeng-112415-114722
[38]  Kim, S., Lee, J.H., Park, E.J., et al. (2023) Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics. Yonsei Medical Journal, 64, 320-326.
https://doi.org/10.3349/ymj.2022.0548
[39]  Chen, X., He, L., Li, Q., et al. (2023) Non-Invasive Prediction of Mi-crosatellite Instability in Colorectal Cancer by a Genetic Algorithm-Enhanced Artificial Neural Network-Based CT Ra-diomics Signature. European Radiology, 33, 11-22.
https://doi.org/10.1007/s00330-022-08954-6
[40]  Fan, S., Li, X., Cui, X., et al. (2019) Computed Tomogra-phy-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Academic Radiology, 26, 1633-1640.
https://doi.org/10.1016/j.acra.2019.02.009
[41]  Shi, R., Chen, W., Yang, B., et al. (2020) Prediction of KRAS, NRAS and BRAF Status in Colorectal Cancer Patients with Liver Metastasis Using a Deep Artificial Neural Network Based on Radiomics and Semantic Features. American Journal of Cancer Research, 10, 4513-4526.
[42]  Yang, L., Dong, D., Fang, M., et al. (2018) Can CT-Based Radiomics Signature Predict KRAS/NRAS/BRAF Mutations in Colo-rectal Cancer? European Radiology, 28, 2058-2067.
https://doi.org/10.1007/s00330-017-5146-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133