COVID-19 generates systematic alterations in humans both in active stages of infection and over time, called post-COVID syndrome. Cortisol is a hormone that is overexpressed in inflammation and cellular stress processes. Its main function is to return to physiological homeostasis, so its evaluation together with other clinical parameters can allow us to determine the degree of systemic affectation by COVID-19. Objective: To evaluate changes in clinical parameters and plasma cortisol concentrations in patients with active COVID-19 and post-COVID syndrome. Material and Methods: Healthy patients, in stages of mild infection, critical and with post-COVID syndrome, were recruited, obtaining, through clinical diagnoses and interviews, their main clinical characteristics, in addition to plasma, in which cortisol concentrations were determined using competitive ELISA. Results: The critical stage group had higher frequencies of comorbidities, clinical symptoms, as well as more altered laboratory parameters compared to the other subgroups. In the post-COVID syndrome group after the initial infection, most laboratory parameters recovered, however, several clinical symptoms remained latent over time. The determination of cortisol showed an increase in its concentration, being higher in patients in critical stage and with post-COVID syndrome. Conclusion: COVID-19 disease generates clinical alterations that trigger an increase in plasma cortisol. These alterations increase as the stages of infection become more severe and some of them remain altered in patients with post-COVID syndrome.
References
[1]
Fernández-Pérez, G.C., Oñate Miranda, M., Fernández-Rodríguez, P., Velasco Casares, M., Corral de la Calle, M., Franco López, á., Díez Blanco, M. and Cuchat, J.M.O. (2021) SARS-CoV-2: What It Is, How It Acts, and How It Manifests in Imaging Studies. Radiología, 63, 115-126. https://doi.org/10.1016/j.rxeng.2020.10.006
[2]
Maguiña Vargas, C., Gastelo Acosta, R. and Tequen Bernilla, A. (2020) El nuevo Coronavirus y la pandemia del COVID-19. Revista Médica Herediana, 31, 125-131. https://doi.org/10.20453/rmh.v31i2.3776
[3]
Bozua, E., Cantón Moreno, R., De Lucas Ramos, P., García-Botella, A., García-Lledó, A., Gómez-Pavón, J., González del Castillo, J., Hernández-Sampelayo, T., Martín-Delgado, M.C., Martín Sánchez, F.J., Martínez-Sellés, M., Molero García, J.M., Moreno Guillén, S., Rodríguez-Artalejo, F.J., Ruiz-Galiana, J., De Pablo Brühlmann, S., Porta Etessam, J. and Santos Sebastián, M. (2021) Síndrome post-COVID: Un documento de reflexión y opinión. Revista española de quimioterapia, 34, 269-279. https://doi.org/10.37201/req/023.2021
[4]
Organización Mundial de la Salud (2021) Coronavirus Actualización 49. Actualización sobre la respuesta inmunitaria a las infecciones por SARS-CoV-2 y otros virus. https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update49-immune-response-es.pdf?sfvrsn=7dfe5bb8_33
[5]
Marco, J.J.G., Pasquín, M.J.á. and Martín, S.M. (2021) Efectividad y seguridad de las vacunas para el SARS-CoV-2 actualmente disponibles. FMC: Formación médica continuada en atención primaria, 28, 442-451. https://doi.org/10.1016/j.fmc.2021.07.001
[6]
álvarez-Carrasco, R.I. (2017) Interpretación de las pruebas usadas para diagnosticar la infección por virus de la inmunodeficiencia humana. Acta Médica Peruana, 34, 309-316. https://doi.org/10.35663/amp.2017.344.464
[7]
Verdugo-Fuentes, A.A., Castro-Espinoza, L., Gutiérrez-Coronado, M.A. and Mar-tínez-Carrillo, J.L. (2019) Metodologías para el análisis de expresión y cuantificación de proteínas conferidas en tejidos de cultivos GM. Revista Mexicana de Ciencias Agrícolas, 10, 815-828. https://doi.org/10.29312/remexca.v10i4.1666
[8]
Manzini, J.L. (2000) Declaración de Helsinki: Principios éticos para la investigación médica sobre sujetos humanos. Acta bioethica, 6, 321-334. https://doi.org/10.4067/S1726-569X2000000200010
[9]
Salazar, M., Barochiner, J., Espeche, W. and Ennis, I. (2020) COVID-19, hipertensión y enfermedad cardiovascular [COVID-19 and Its Relationship with Hypertension and Cardiovascular Disease]. Hipertension y riesgo vascular, 37, 176-180. https://doi.org/10.1016/j.hipert.2020.06.003
[10]
Loarce-Martos, J., García-Fernández, A., López-Gutiérrez, F., García-García, V., Calvo-Sanz, L., Del Bosque-Granero, I., Terán-Tinedo, M.A., Boteanu, A., Bachiller-Corral, J. and Vázquez-Díaz, M. (2020) Altas tasas de enfermedad grave y muerte por infección por SARS-CoV-2 en pacientes con enfermedad reumática tratados con rituximab: un estudio descriptivo. Reumatología Internacional, 40, 2015-2021. https://doi.org/10.1007/s00296-020-04699-x
[11]
Gökmen, Y., Baskici, C. and Ercil, Y. (2021) The Impact of National Culture on the Increase of COVID-19: A Cross-Country Analysis of European Countries. International Journal of Intercultural Relations, 81, 1-8.
[12]
Herrera-Van Oostdam, A.S., Castañeda-Delgado, J.E., Oropeza-Valdez, J.J., Borrego, J.C., Monárrez-Espino, J., Zheng, J., Mandal, R., Zhang, L., Soto-Guzmán, E., Fer-nández-Ruiz, J.C., Ochoa-González, F., Trejo Medinilla, F.M., López, J.A., Wishart, D.S., Enciso-Moreno, J.A. and López-Hernández, Y. (2021) Immunometabolic Signatures Predict Risk of Progression to Sepsis in COVID-19. PLOS ONE, 16, e0256784. https://doi.org/10.1371/journal.pone.0256784
[13]
Cáceres-Bernaola, U., Becerra-Núñez, C., Mendívil-Tuchía, S. and Ravelo-Hernán-dez, J. (2020) Neumonía por COVID-19 y uso de tocilizumab. Anales de la Facultad de Medicina, 81, 196-200. https://doi.org/10.15381/anales.v81i2.17893
[14]
Gil, R., Bitar, P., Deza, C., Dreyse, J., Florenzano, M., Ibarra, C., Jorquera, J., Melo, J., Olivi, H., Parada, M.T., Rodríguez, J.C. and Undurraga, á. (2021) Cuadro Clínico Del COVID-19 [Clinical Presentation of Covid-19]. Revista Médica Clínica Las Condes, 32, 20-29. https://doi.org/10.1016/j.rmclc.2020.11.004
[15]
Lima-Martínez, M.M., Carrera Boada, C., Madera-Silva, M.D., Marín, W. and Contreras, M. (2021) COVID-19 and Diabetes: A Bidirectional Relationship. Clínica e Investigación en Arteriosclerosis, 33, 151-157. https://doi.org/10.1016/j.artere.2021.04.004
[16]
Tan, T., et al. (2020) Association between High Serum Total Cortisol Concentrations and Mortality from COVID-19. The Lancet Diabetes & Endocrinology, 8, 659-660. https://doi.org/10.1016/S2213-8587(20)30216-3
[17]
Ahmadi, I., Estabraghnia Babaki, H., Maleki, M., Jarineshin, H., Kaffashian, M.R., Hassaniazad, M., Kenarkoohi, A., Ghanbarnejad, A., Falahi, S., Kazemi Jahromi, M., Ghaneialvar, H. and Sohrabipour, S. (2022) Changes in Physiological Levels of Cortisol and Adrenocorticotropic Hormone upon Hospitalization Can Predict SARS-CoV-2 Mortality: A Cohort Study. International Journal of Endocrinology, 2022, Article ID: 4280691. https://doi.org/10.1155/2022/4280691
[18]
Tomo, S., Banerjee, M., Karli, S., et al. (2022) Assessment of DHEAS, Cortisol, and DHEAS/Cortisol Ratio in Patients with COVID-19: A Pilot Study. Hormones, 21, 515-518. https://doi.org/10.1007/s42000-022-00382-x
[19]
Chua, M.W.J. and Chua, M.P.W. (2021) Delayed Onset of Central Hypocortisolism in a Patient Recovering from COVID-19. AACE Clinical Case Reports, 7, 2-5. https://doi.org/10.1016/j.aace.2020.11.001
[20]
Yavropoulou, M.P., Tsokos, G.C., Chrousos, G.P. and Sfikakis, P.P. (2022) Protracted Stress-Induced Hypocortisolemia May Account for the Clinical and Immune Manifestations of Long COVID. Clinical Immunology, 245, Article ID: 109133. https://doi.org/10.1016/j.clim.2022.109133
[21]
López-Hernández, Y., Monárrez-Espino, J., López, D.A.G., Zheng, J., Borrego, J.C., Torres-Calzada, C., Elizalde-Díaz, J.P., Mandal, R., Berjanskii, M., Martínez-Martínez, E., López, J.A. and Wishart, D.S. (2023) The Plasma Metabolome of Long COVID Patients Two Years after Infection. Scientific Reports, 13, Article No. 12420. https://doi.org/10.1038/s41598-023-39049-x