All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

不同放牧策略对草原土壤性质的影响研究——基于机器学习
Study on the Effects of Different Grazing Strategies on Soil Properties of Grassland—Based on Machine Learning

DOI: 10.12677/HJDM.2024.141004, PP. 26-42

Keywords: 放牧策略,土壤性质,植被生物量,机器学习
Grazing Strategies
, Soil Properties, Vegetation Biomass, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

草原作为分布最广的重要陆地植被类型之一,其放牧优化问题的研究可以为政府制定放牧政策提供科学依据。本文以内蒙古锡林郭勒草原为例,基于不同放牧策略下的监测点数据,首先运用岭回归模型、BP神经网络和XGBoost等机器学习算法研究不同放牧策略对该区域土壤性质的影响,其次建立不同深度土壤湿度值的预测模型,然后构建反映放牧强度对土壤化学性质影响的数学模型,最后根据历史数据对2022年土壤性质的相关指标展开预测。结果表明随着放牧强度的加大,植被生物量呈现先增后降的趋势,同时无牧和重牧也不利于植被生长;模型预测了锡林郭勒草原监测样地在不同放牧强度下2022年土壤同期有机碳、无机碳、全N、土壤C/N比的值,经验证拟合效果都较好。为提高模型的实用性,后续研究还应考虑到部分特征间的相关性。
As one of the most widely distributed major terrestrial vegetation types, the optimization of grazing in grasslands could provide scientific evidence for governments to formulate grazing policies. Taking the Xilin Gol Grassland in Inner Mongolia as an example and based on the monitoring data across sites under various grazing strategies, this study first leveraged machine learning algorithms including ridge regression, BP neural networks and XGBoost to investigate the impacts of different grazing strategies on soil properties in the region. Prediction models of soil moisture content across depths were then established. Afterwards, a mathematical model reflecting grazing intensity’s in-fluence on soil chemical properties was constructed. Finally, predictions were made with historical data on relevant indicators of soil properties in 2022. Results demonstrated that with the increase of grazing intensity, vegetation biomass first increased and then decreased, while no grazing and overgrazing were also detrimental to vegetation growth. The model predicted the 2022 values of soil organic carbon, inorganic carbon, total nitrogen and C/N ratio across monitoring sites in Xilin Gol Grassland under varied grazing intensities. Verification suggested relatively decent goodness of fit. To improve model applicability, future studies should consider correlations between certain features.

References

[1]  凯撒?米吉提. 当前新疆草原畜牧及其可持续发展策略[J]. 中国畜禽种业, 2019, 15(12): 27.
[2]  许宏斌, 辛晓平, 宝音陶格涛, 等. 放牧对呼伦贝尔羊草草甸草原生物量分布的影响[J]. 草地学报, 2020, 28(3): 768-774.
[3]  张倩, 杨晶, 姚宝辉, 蔡志远, 王小燕, 苏军虎. 放牧模式对祁连山东缘高寒草甸土壤理化特性和物种多样性的影响[J]. 草原与草坪, 2021, 41(2): 105-112.
https://doi.org/10.13817/j.cnki.cyycp.2021.02.015
[4]  Wang, X.F., Ma, H.-B., Shen, Y, et al. (2019) Effects of Different Rotational Grazing Patterns on Plant Community Characteristics in Desert Steppe Grassland. Acta Pratac-ulturae Sinica.
[5]  Woodward, S.J.R., Wake, G.C. and McCall, D.G. (1995) Optimal Grazing of a Multi-Paddock System Using a Discrete Time Model. Agricultural Systems, 48, 119-139.
https://doi.org/10.1016/0308-521X(94)00013-H
[6]  闫婷, 黄海广, 闫德仁, 松晓. 浑善达克沙地地下水位动态变化及其影响[J]. 内蒙古林业科技, 2021, 47(2): 20-23.
[7]  宋珊. 锡林郭勒盟地下水动态监测工作现状及对策[J]. 内蒙古水利, 2021(8): 21-22.
[8]  Zhou, Y., Fan, J., Zhang, W., et al. (2011) Factors Influencing Altitudinal Patterns of C3 Plant Foliar Carbon Isotope Composition of Grasslands on the Qinghai-Tibet Plateau, China. Alpine Botany, 121, 79-90.
https://doi.org/10.1007/s00035-011-0093-5
[9]  朱海龙, 李萍萍. 基于岭回归和LASSO回归的安徽省财政收入影响因素分析[J]. 江西理工大学学报, 2022, 43(1): 59-65.
https://doi.org/10.13265/j.cnki.jxlgdxxb.2022.01.009
[10]  Xu, L., Xu, X., Tang, X., et al. (2018) Managed Grass-land Alters Soil N Dynamics and N2O Emissions in Temperate Steppe. Journal of Environmental Sciences, 66, 20-30.
https://doi.org/10.1016/j.jes.2017.04.003
[11]  袁红. 数据挖掘模型在股市预测中的应用综述[J]. 中国集体经济, 2017(33): 66-67.
[12]  黄卿, 谢合亮. 机器学习方法在股指期货预测中的应用研究——基于BP神经网络、SVM和XGBoost的比较分析[J]. 数学的实践与认识, 2018, 48(8): 297-307.
[13]  冯玉芳, 卢厚清, 殷宏, 等. 基于BP神经网络的故障诊断模型研究[J]. 计算机工程与应用, 2019, 55(6): 24-30.
[14]  陈艳玫, 刘子锋, 李贤德, 等. 2015-2050年中国人口老龄化趋势与老年人口预测[J]. 中国社会医学杂志, 2018, 35(5): 480-483.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413