全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

龙胆科植物来源的化合物抗炎作用机制研究进展
Research Progress on Anti-Inflammatory Mechanisms of Compounds from Gentiaceae Plants

DOI: 10.12677/PI.2024.131004, PP. 25-32

Keywords: 龙胆科植物,活性成分,炎症,抗炎机制
Gentiaceae Plants
, Active Ingredients, Inflammation, Anti-Inflammatory Mechanisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

龙胆科(Gentianaceae)植物是一类广泛分布于全球的药用植物,其主要活性成分为龙胆苦苷、獐芽菜苷、獐芽菜苦苷以及生物碱、黄酮、香豆素及内酯等化合物。龙胆科植物来源的化合物具有显著的抗炎作用,可以通过多种途径调节炎症反应,对于治疗各种炎症相关疾病具有重要的意义。本文综述了龙胆科植物来源的化合物抗炎作用的主要机制,包括抑制转录因子的激活;抑制炎症相关酶的表达;减少炎症介质的产生;调节免疫细胞的功能;以及影响自噬和NLRP3等新兴机制,旨在为龙胆科植物来源的化合物在炎症性疾病中的应用提供一定的参考。
Gentianaceae is a kind of medicinal plants widely distributed in the world. Its main active compo-nents are gentiopicroside, swertiamarin, sweroside, alkaloids, flavonoids, coumarins and lactones. Compounds from Gentianaceae plants have significant anti-inflammatory effects, can regulate in-flammatory response through a variety of ways, and is of great significance for the treatment of var-ious inflammation-related diseases. This paper reviewed the main mechanisms of anti-inflammatory effects of compounds from Gentianaceae plants, including in hibiting the activation of transcription factors, down regulating the expression of inflammation-related enzymes, reducing the production of inflammatory mediators, regulating the function of immune cells, as well as affecting autophagy and NLRP3, the aim is to provide references for application of compounds from Gentianaceae plantsin inflammatory diseases.

References

[1]  王菲菲, 张聿梅, 郑笑为, 等. 环烯醚萜类化合物的结构和生物学活性研究进展[J]. 中国药事. 2019, 33(3): 323-330.
[2]  董丽萍, 倪梁红, 赵志礼, 等. 龙胆属环烯醚萜类化学成分研究进展[J]. 中草药. 2017, 48(10): 2116-2128.
[3]  孙楷超, 段小群. 龙胆苦苷的药理作用机制的研究进展[J]. 广东化工, 2023, 50(8): 105-107.
[4]  Pandey, T., Smita, S.S., Mishr, A.A., et al. (2020) Swertiamarin, a Secoiridoid Glycoside Modulates nAChR and AChE Activity. Experimental Gerontology, 138, Article ID: 111010.
https://doi.org/10.1016/j.exger.2020.111010
[5]  Soehnlein, O. and Libby, P. (2021) Targeting Inflammation in Atherosclerosis—From Experimental Insights to the Clinic. Nature Reviews Drug Discovery, 20, 589-610.
https://doi.org/10.1038/s41573-021-00198-1
[6]  Domper Arnal, M.J., Hijos-Mallada, G. and Lanas, A. (2022) Gastrointestinal and Cardiovascular Adverse Events Associated with NSAIDs. Expert Opinion on Drug Safety, 21, 373-384.
https://doi.org/10.1080/14740338.2021.1965988
[7]  Lawrence, T. (2009) The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harbor Perspectives in Biology, 1, a001651.
https://doi.org/10.1101/cshperspect.a001651
[8]  Xu, R., Ma, L., Chen, T. Wang, J. (2022) Sophorolipid Sup-presses LPS-Induced Inflammation in RAW264.7 Cells through the NF-κB Signaling Pathway. Molecules, 27, Article 5037.
https://doi.org/10.3390/molecules27155037
[9]  Barnabei, L., Laplantine, E., Mbongo, W., et al. (2021) NF-κB: At the Borders of Autoimmunity and Inflammation. Frontiers in Immunology, 12, Article 716469.
https://doi.org/10.3389/fimmu.2021.716469
[10]  You, L., Wang, Z., Li, H., et al. (2015) The Role of STAT3 in Autophagy. Autophagy, 11, 729-739.
https://doi.org/10.1080/15548627.2015.1017192
[11]  Agashe, R.P., Lippman, S.M. and Kurzrock, R. (2022) JAK: Not Just Another Kinase. Molecular Cancer Therapeutics, 21, 1757-1764.
https://doi.org/10.1158/1535-7163.MCT-22-0323
[12]  Jia, N., Ma, H., Zhang, T., et al. (2022) Gentiopicroside Attenuates Collagen-Induced Arthritis in Mice via Modulating the CD147/p38/NF-κB Pathway. International Im-munopharmacology, 108, Article ID: 108854.
https://doi.org/10.1016/j.intimp.2022.108854
[13]  Saravanan, S., Islam, V.I., Babu, N.P., et al. (2014) Swertiama-rin Attenuates Inflammation Mediators via Modulating NF-κB/I κB and JAK2/STAT3 Transcription Factors in Adjuvant Induced Arthritis. European Journal of Pharmaceutical Sciences, 56, 70-86.
https://doi.org/10.1016/j.ejps.2014.02.005
[14]  Medeiros, R., Otuki, M.F., Avellar, M.C.W. and Calixto, J.B. (2007) Mechanisms Underlying the Inhibitory Actions of the Pentacyclic Triterpene α-Amyrin in the Mouse Skin In-flammation Induced by Phorbol Ester 12-O-Tetradecanoylphorbol-13-Acetate. European Journal of Pharmacology, 559, 227-235.
https://doi.org/10.1016/j.ejphar.2006.12.005
[15]  Li, J., Wang, T., Liu, P., et al. (2021) Hesperetin Ameliorates Hepatic Oxidative Stress and Inflammation via the PI3K/AKT-Nrf2-ARE Pathway in Oleic Acid-Induced HepG2 Cells and a Rat Model of High-Fat Diet-Induced NAFLD. Food & Function, 12, 3898-3918.
https://doi.org/10.1039/D0FO02736G
[16]  Prabhakaran, J., Molotkov, A., Mintz, A. and Mann, J.J. (2021) Pro-gress in PET Imaging of Neuroinflammation Targeting COX-2 Enzyme. Molecules, 26, Article 3208.
https://doi.org/10.3390/molecules26113208
[17]  Desai, S.J., Prickril, B. and Rasooly, A. (2018) Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutrition and Cancer, 70, 350-375.
https://doi.org/10.1080/01635581.2018.1446091
[18]  陈家盛, 吴华, 曹蕴. 一氧化氮对炎症大鼠TNF-α、IL-2、IL-10的影响[J]. 现代中西医结合杂志, 2013, 22(21): 2294-2296.
[19]  Jia, N., Chu, W., Li, Y., et al. (2016) Iridoid Glycosides from the Flowers of Gentiana macrophylla Pall. Ameliorate Collagen-Induced Arthritis in Rats. Journal of Ethnopharmacology, 189, 1-9.
https://doi.org/10.1016/j.jep.2016.05.027
[20]  Yamada, H., Kikuchi, S., Inui, T., et al. (2014) Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Ex-pression and Blocks NF-κB Promoter Activity in Murine Macrophages. PLOS ONE, 9, e113834.
https://doi.org/10.1371/journal.pone.0113834
[21]  Jiang, D.J., Jiang, J.L., Tan, G.S., et al. (2003) Deme-thylbellidifolin Inhibits Adhesion of Monocytes to Endothelial Cells via Reduction of Tumor Necrosis Factor α and En-dogenous Nitric Oxide Synthase Inhibitor Level. Planta Medica, 69, 1150-1152.
https://doi.org/10.1055/s-2003-818008
[22]  Ruan, Y., Chen, L., Xie, D., et al. (2022) Mechanisms of Cell Adhe-sion Molecules in Endocrine-Related Cancers: A Concise Outlook. Frontiers in Endocrinology, 13, Article 865436.
https://doi.org/10.3389/fendo.2022.865436
[23]  Kong, D.H., Kim, Y.K., Kim, M.R., et al. (2018) Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. International Journal of Molecular Sciences, 19, Article 1057.
https://doi.org/10.3390/ijms19041057
[24]  Cook-Mills, J.M., Marchese, M.E. and Abdala-Valencia, H. (2011) Vascular Cell Adhesion Molecule-1 Expression and Signaling during Disease: Regulation by Reactive Oxygen Species and Antioxidants. Antioxidants & Redox Signaling, 15, 1607-1638.
https://doi.org/10.1089/ars.2010.3522
[25]  Wang, L., Ding, Y., Guo, X. and Zhao, Q. (2015) Role and Mechanism of Vascular Cell Adhesion Molecule-1 in the Development of Rheumatoid Arthritis. Experimental and Therapeutic Med-icine, 10, 1229-1233.
https://doi.org/10.3892/etm.2015.2635
[26]  吴昭瑜, 许之珏, 蒲蕻吉, 等. 神经损伤诱导蛋白1的生理功能及其在相关疾病中的作用[J]. 上海交通大学学报(医学版), 2023, 43(3): 358-364.
[27]  Hwang, S.J., Ahn, B.J., Shin, M.W., et al. (2022) miR-125a-5p Attenuates Macrophage-Mediated Vascular Dysfunction by Targeting Ninjurin1. Cell Death & Differentiation, 29, 1199-1210.
https://doi.org/10.1038/s41418-021-00911-y
[28]  Ahn, B.J., Lee, H.J., Shin, M.W., et al. (2009) Ninjurin1 Is Expressed in Myeloid Cells and Mediates Endothelium Adhesion in the Brains of EAE Rats. Biochemical and Biophysical Research Communications, 387, 321-325.
https://doi.org/10.1016/j.bbrc.2009.07.019
[29]  Kesavan, R., Chandel, S., Upadhyay, S., et al. (2016) Gentiana Lutea Exerts Anti-Atherosclerotic Effects by Preventing Endothelial Inflammation and Smooth Muscle Cell Migration. Nutrition, Metabolism and Cardiovascular Diseases, 26, 293-301.
https://doi.org/10.1016/j.numecd.2015.12.016
[30]  Bassiouni, W., Ali, M.A.M. and Schulz, R. (2021) Multifunc-tional Intracellular Matrix Metalloproteinases: Implications in Disease. The FEBS Journal, 288, 7162-7182.
https://doi.org/10.1111/febs.15701
[31]  Fernandez-Patron, C., Kassiri, Z. and Leung, D. (2016) Modulation of Systemic Metabolism by MMP-2: From MMP-2 Deficiency in Mice to MMP-2 Deficiency in Patients. Comprehensive Physiology, 6, 1935-1949.
https://doi.org/10.1002/cphy.c160010
[32]  Lovett, D.H., Mahimkar, R., Raffai, R.L., et al. (2012) A Novel Intra-cellular Isoform of Matrix Metalloproteinase-2 Induced by Oxidative Stress Activates Innate Immunity. PLOS ONE, 7, e34177.
https://doi.org/10.1371/journal.pone.0034177
[33]  Imran, M., Arshad, M.S., Butt, M.S., et al. (2017) Mangiferin: A Natural Miracle Bioactive Compound against Lifestyle Related Disorders. Lipids in Health and Disease, 16, Article No. 84.
https://doi.org/10.1186/s12944-017-0449-y
[34]  Kim, K.S., Han, C.Y., Han, Y.T. and Bae, E.J. (2019) Rhodanthpyrone A and B Play an Anti-Inflammatory Role by Suppressing the Nuclear Factor-κB Pathway in Macro-phages. The Korean Journal of Physiology & Pharmacology, 23, 493-499.
https://doi.org/10.4196/kjpp.2019.23.6.493
[35]  Chang, Y., Tian, Y., Zhou, D., et al. (2021) Gentiopicroside Ame-liorates Ethanol-Induced Gastritis via Regulating MMP-10 and pERK1/2 Signaling. International Immunopharmacology, 90, Article ID: 107213.
https://doi.org/10.1016/j.intimp.2020.107213
[36]  Hong, W., Fu, W., Zhao, Q., et al. (2023) Effects of Oleanolic Acid on Acute Liver Injury Triggered by Lipopolysaccharide in Broiler Chickens. British Poultry Science, 64, 697-709.
[37]  Sun, X., Li, P., Qu, X. and Liu, W.G. (2021) Isovitexin Alleviates Acute Gouty Arthritis in Rats by In-hibiting Inflammation via the TLR4/MyD88/NF-κB Pathway. Pharmaceutical Biology, 59, 1326-1333.
https://doi.org/10.1080/13880209.2021.1979595
[38]  刘浩, 杨美玲, 朱平. T细胞亚群与ANCA相关性小血管炎研究进展[J]. 微循环学杂志, 2019, 29(1): 101-105.
[39]  杨霞, 宁宗. 巨噬细胞极化调控信号通路及M1/M2失衡在肺部炎症性疾病中作用的研究进展[J]. 山东医药, 2023, 63(26): 88-91.
[40]  Nedeva, C. (2021) Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules, 11, Article 1011.
https://doi.org/10.3390/biom11071011
[41]  吕倩. 龙胆苦苷对CIA小鼠中Th17/Treg平衡的影响及机制研究[D]: [硕士学位论文]. 汕头: 汕头大学, 2022.
[42]  Ren, Z., Tang, H., Wan, L., et al. (2021) Swertianolin Ameliorates Immune Dysfunction in Sepsisviablocking the Immunosuppressive Function of Myeloid-Derived Suppressor Cells. Eu-ropean Journal of Histochemistry, 65, Article 3292.
https://doi.org/10.4081/ejh.2021.3292
[43]  丁洁, 刘思奇, 王艺颖, 等. 龙胆苦甙上调大鼠LC3Ⅱ表达促进自噬缓解非酒精性脂肪性肝炎[J]. 实用医学杂志, 2023, 39(16): 2022-2028.
[44]  刘瀚文, 王旸, 杨峥. 龙胆苦苷对非小细胞肺癌细胞A549株化疗敏感性的影响分析[J]. 实用癌症杂志, 2023, 38(9): 1398-1402.
[45]  An, D., Xu, W., Ge, Y., et al. (2023) Protection of Oxygen Glucose Depriva-tion-Induced Human Brain Vascular Pericyte Injury: Beneficial Effects of Bellidifolin in Cellular Pyroptosis. Neuro-chemical Research, 48, 2794-2807.
https://doi.org/10.1007/s11064-023-03943-7
[46]  Liu, S.J., Guo, B.D., Gao, Q.H., et al. (2023) Ursolic Acid Alle-viates Chronic Prostatitis via Regulating NLRP3 Inflammasome-Mediated Caspase-1/GSDMD Pyroptosis Pathway. Phytotherapy Research, 38, 82-97.
https://doi.org/10.1002/ptr.8034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133